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Abstract: In this paper strong limits on the accuracy of real-world physical computation are

established. First it is proven that there cannot be a physical computer C to which one can pose

any and all computational tasks concerning the physical universe. Next it is proven that no physi-

cal computer C can correctly carry out any computational task in the subset of such tasks that can

be posed to C. This means that there cannot be a physical computer that can be assured of cor-

rectly “processing information faster than the universe does”. Because this result holds indepen-

dent of how or if the computer is physically coupled to the rest of the universe, it also means that

there cannot exist an infallible, general-purpose observation apparatus, nor an infallible, general-

purpose control apparatus. These results do not rely on systems that are infinite, and/or non-classi-

cal, and/or obey chaotic dynamics. They also hold even if one could use an infinitely fast, infi-

nitely dense computer, with computational powers greater than that of a Turing Machine (TM). In

fact a non-TM formulation of computation is needed to address the issues considered in this

paper. Analogues of results concerning universal Turing Machines and the Halting theorem are

derived for this novel kind of computer, as are results concerning the (im)possibility of certain

kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity,

“prediction complexity”, is elaborated. A task-independent bound is derived on how much the

prediction complexity of a computational task can differ for two different reference universal

physical computers used to solve that task. This is analogous to the “encoding” bound governing
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how much the algorithm information complexity of a TM calculation can differ for two reference

universal TMs. It is proven that either the Hamiltonian of our universe proscribes a certain type of

computation, or prediction complexity is unique (unlike algorithmic information complexity).

Finally, the possible implications of this analysis for the issue of whether the universe “is” a com-

puter are briefly discussed.
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INTRODUCTION

Recently there has been heightened interest in the relationship between physics and computa-

tion ([1-37]). This interest extends far beyond the topic of quantum computation. On the one

hand, physics has been used to investigate the limits on computation imposed by operating com-

puters in the real physical universe. Conversely, there has been speculation concerning the limits

imposed on the physical universe (or at least imposed on our models of the physical universe) by

the need for the universe to process information, as computers do.

To investigate this second issue one would like to know what fundamental distinctions, if any,

there are between the physical universe and a physical computer. To address this issue this paper

begins by establishing that the universe cannot contain a computer to which one can pose any

arbitrary computational task. Accordingly, this paper goes on to consider computer-indexed sub-

sets of computational tasks, where all the members of any such subset can be posed to the associ-

ated computer. Restricting attention to such subsets, it then proves that one cannot build a

computer that can “process information faster than the universe”. More precisely, it is shown that

one cannot build a computer that can, for any physical system, correctly predict any aspect of that

system’s future state before that future state actually occurs.

This asymmetry in computational speeds constitutes a fundamental distinction between the

universe and the set of all physical computers. Its existence casts an interesting light on the ideas

of Fredkin, Landauer and others concerning whether the universe “is” a computer, whether there

are “information-processing restrictions” on the laws of physics, etc. [11, 20]. In a certain sense,

the universe is more powerful than any information-processing system constructed within it could

be. This result can alternatively be viewed as a restriction on the universe as a whole — the uni-

verse cannot support the existence within it of a computer that can process information as fast as it

can.

To establish these unpredictability results this paper considers a model of physical computa-

tion which is actually general enough to address the performance of other computational tasks as
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well as prediction of the future. In particular, this model does not rely on temporal orderings of

events, and therefore the unpredictability results also establish that no computer can infallibly pre-

dict the past (i.e., perform retrodiction). So any memory system must be fallible, i.e., the second

law cannot be used to ensure perfectly faultless memory of the past. (Accordingly, the psycholog-

ical arrow of time is not inviolate [31].1) The unpredictability results are also general enough to

allow arbitrary coupling of the computer and the external universe. So for example they also

establish that there cannot be either an infallible general purpose observation device nor an infalli-

ble general purpose control device. (The result concerning observation can be viewed as an uncer-

tainty principle, one that does not involve quantum mechanics.)

No physically unrealizable systems, chaotic dynamics, or non-classical dynamics are

exploited in this paper, and the results hold even if one restricts attention to systems which contain

a finite number of degrees of freedom. The results also hold even if the computer is infinitely

dense and/or infinitely fast (in which case the speed of light would be infinite), even if the com-

puter has an infinite amount of time to do the calculation (either before or after the event being

predicted occurs), and even if the computer’s initial input explicitly contains the correct value of

the variable it is trying to predict / observe. (More generally they hold regardless of the program

running on the computer.) They also hold for both analog and digital computation, and whether or

not the computer’s program can be loaded into its own input (i.e., regardless of the computational

universality of the computer). The unpredictability results also hold even if one allows the com-

puter to be initialized with the correct answer. Moreover, the results hold regardless of the (Chom-

sky hierarchy) power of one’s computer, so long as it is physically realizable. If it turns out to be

physically possible to have computers with computational power greater than that of a Turing

machine, then the result of this paper holds for such a computer. As a particular example, the

results also hold even if the “computer” includes one or more human beings. So even if Penrose’s

musing on quantum gravity and intelligence turns out to be valid — even if human computational

powers are not subject to the restrictions that apply to any of the members of the Chomsky hierar-

chy —  it is still true that human intelligence is guaranteed to be wrong sometimes.
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Results of such generality are derived by examining the underlying issue from the perspective

of the computational character of real-world physical systems in general, rather than that of some

single precisely specified (and often non-physically realizable) system. The associated mathemat-

ics does not directly involve dynamical systems like Turing machines. Rather it casts computation

in terms of partitions of the space of possible worldlines of the universe. For example, to specify

what input a particular physical computer has at a particular time is to specify a particular subset

of all possible worldlines of the universe; different inputs to the computation correspond to differ-

ent (non-overlapping) such subsets. Similar partitions specify outputs of a physical computer.

Results concerning the (im)possibility of certain kinds of physical computation are derived by

considering the relationship between these kinds of partitions. In its being defined in terms of

such partitions, “physical computation” involves a structure that need not even be instantiated in

some particular physically localized apparatus; the formal definition of a physical computer is

general enough to also include more subtle non-localized dynamical processes unfolding across

the entire universe. Computers in the conventional, space-time localized sense (e.g., the box on

your desk) are simply special examples, with lots of extra restrictions that turn out to be unneces-

sary in the underlying mathematics.

Section 1 of this paper generalizes from particular instances of real-world physical computers

that “try to reliably and ahead of time predict the future state of any system” to motivate a broad

formal definition of physical computation in terms of partitions. To maintain maximum breadth of

the analysis, we do not want to restrict attention to physical computers that are (or are not) capable

of self-reference. As an alternative, we start by restricting attention to universes containing at least

two physical computers. (Put another way, our initial results hold for any single computer not so

powerful as to preclude the possible existence anywhere else in the universe of another computer

as powerful as it is — which certainly describes any computer that human beings can ever cre-

ate.) Section 1 also establishes that there exist prediction problems that cannot even be posed to

one of those two physical computers. Restrictions on the set of prediction problems are introduced

accordingly.

Section 2 proves that, even within such a restricted set of prediction problems, one cannot
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have a pair of computers each of which can, reliably and ahead of time, predict the future state of

any system. It is also in Section 2 that the impossibility of an infallible general-purpose retrodic-

tion apparatus, observation apparatus, or control apparatus is established. These results are all

derived through what is essentially a physical version of a Cretan Liar’s paradox; they can be

viewed as a physical analogue of Godel’s Incompleteness Theorem, involving two instances of

the putative computer rather than self-referential computers.

The mathematics and impossibility results governing the partitions underlying computation

bear many parallels with that governing conventional computer science models. Section 3 expli-

cates some of that mathematical structure, involving topics ranging from error correction to the

(lack of) transitivity of computational predictability across multiple distinct computers. In particu-

lar, results are presented concerning physical computation analogues of the mathematics of Tur-

ing machines, e.g., “universal” physical computers, and Halting theorems for physical computers.

In addition, an analogue of algorithmic information complexity, “prediction complexity”, is elab-

orated. A task-independent bound is derived on how much the prediction complexity of a compu-

tational task can differ for two different reference universal physical computers used to solve that

task. This bound is similar to the “encoding” bound governing how much the algorithmic infor-

mation complexity of a Turing machine calculation can differ for two reference universal Turing

machines. It is then proven that one of two cases must hold. One is that the Hamiltonian of our

universe proscribes a certain type of computation. The other possibility is that, unlike conven-

tional algorithmic information complexity, its physical computation analogue is unique, in that

there is one and only version of it that can be applicable throughout our universe.

Section 4 presents a brief overview of how, the unpredictability results notwithstanding, this

paper’s formalism might be used to gainfully view a universe as a (single) computer. The implica-

tions of this paper’s results under such an identification are briefly discussed. This section then

relates the work presented in this paper to previous work in the literature. This section ends with a

discussion of future work.

Throughout this paper, B ≡ {0, 1}, ℜ is defined to be the set of all real numbers, ‘^’ is the log-
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ical and operator, and ‘NOT’ is the logical not operator applied to B. To avoid proliferation of

symbols, often set-delineating curly brackets will be used surrounding a single symbol, in which

case that symbol is to taken to be a variable with the indicated set being the set of all values of that

variable. So for example “{y}” refers to the set of all values of the variable y. In addition o(A) is

the (potentially transfinite) cardinality of any set A, and 2A is the power set of A. u ∈ U are the

possible states of the universe, and
^
U is the space of allowed trajectories through U (i.e., world-

lines of the universe). So û ∈ ^
U is a single-valued map from t ∈ ℜ to u ∈ U, with ut ≡ ût the state

of the universe at time t. Note that since the universe is microscopically deterministic, ut for any t

uniquely specifies
^
u. Sometimes there will be implicit constraints on

^
U. For example, we will

assume in discussing any particular computer that the space
^
U is restricted to worldlines û that

contain that computer. Fully formal definitions and proofs are relegated to the appendix, so that

the main text can concentrate on the fundamental concepts. Extra discussion and examples of

those concepts that would be too distracting in the main text are also presented in the appendix.

An earlier analysis addressing some of the issues considered in this paper can be found in [33].

I. A DEFINITION OF WHAT IT MEANS TO “PREDICT THE FUTURE”

i) Definition of a Physical Computer

For the purposes of this paper, a physical computer will “predict the state of a system ahead of

time” if the computer is a general emulator of the physical dynamics of such a system, an emula-

tor that operates faster than that dynamics. So given some time T > 0, and given some desired

information concerning the state of some system at T, our goal is to have the computer output that

desired information before time T. To that end we allow the computer to be “initialized” at time 0,

with different “input”, depending on the value of T, what information is desired, perhaps informa-

tion about the current state of the state whose future is being predicted, etc.

To make this concrete, we start by distinguishing the specification of what we want the com-
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puter to calculate from the results of that calculation. Let α be the value of a variable delineating

some information concerning the state of the physical universe at time T (e.g., the values of a

finite set of bits concerning the state of a particular system S residing in the universe at that time).

We indicate a specification that we wish to know α as a question q ∈ Q. So q says what α is for

any state of the universe at time T. This means that what we wish our computer to tell us is the

result of q, a single-valued mapping from the state of the universe at T to an answer α.

Since û fixes uT and (for a deterministic universe) vice-versa, we can generalize this by dis-

pensing with specification of T. In other words, we can recast any q as any single-valued mapping

from û to α. So q fixes a partition over the space
^
U, and any pair (α, q) delineates a region in

^
U.

In general, the space {α} of potential answers of the universe (i.e., the set of partition element

labels) can change depending on q, the question concerning the universe (i.e., the partition). This

means that we need to concern ourselves not just with the relation between computers’ answer

values, but also with the relation between the associated spaces of possible values (e.g., the num-

ber 1 is both an element of the space B and of the space {1,4,5}, two cases that must be distin-

guished.) We will write the space {α} as A(q) when we need to indicate its dependence on

q explicitly. As much as possible, the extra complexity associated with keeping track of A(q) is

relegated to the fully formal analysis in the appendix.

Without the accompanying q, a value of α, by itself, is meaningless. So we must know what q

we are answering when we read the computer’s output. Accordingly, we take the output of our

computer to be a question q together with an associated prediction for α. Very often the question

— a mapping from answers to associated sets of possible states of the real world — is only stored

in a human user’s memory. In this case that aspect of the human is implicitly part of the computer.

As an example, some particular pattern of bits in an electronic workstation needs to be “inter-

preted” by a human to serve as a prediction concerning the physical universe.

Our computer’s output provides a delineation of a subregion of û ∈ ^
U; those û such that

q( û ) = α. It provides more structure than just that though, e.g., two different outputs can have the

same answer even though they delineate different regions (due to having different questions).
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Finally, choose some real number τ, where 0 < τ < T. Our goal is that for any q ∈ Q there is an

associated initial “input” state of the computer which ensures that at time τ our computer’s output

is a correct prediction for α, in that for the û of the universe, q( û ) = α.

Note that despite the nomenclature, a “question / answer” pair is not a premise and associated

conclusion, in the sense of an if-then statement. Rather it is just a conclusion. The associated

premise (i.e., the if clause) is encoded in the input.

Now consider a conventional computer that consists of a fixed physical dynamical system

together with a pair of mappings by which some of that system’s observable degrees of freedom

are interpreted as (perhaps binary) “inputs”, and some as “outputs”. More precisely, certain char-

acteristics of the degrees of freedom of the computer — like whether they exceed a pre-specified

threshold, in the case of a digital computer — are interpreted that way. The input and output

degrees of freedom can overlap, and may even be identical. Since the computer exists in the phys-

ical universe its state is at any moment is specified by u. Therefore both the interpretation of some

of the computer’s degrees of freedom as “inputs” and some as “outputs” is equivalent to a single-

valued mapping from u ∈ U to a space of inputs and of outputs, respectively. With the input time

0 and output time T implicit, we can recast the domains of those mappings as
^
U rather than U.

All of this holds whether the computation of outputs from inputs proceeds in a “digital” or

“analog” fashion. The only restriction is that we are interested in falsifiable rather than probabilis-

tic predictions. This restriction will often hold even if the system being predicted is stochastic and

the precise aspect of it we’re predicting is a function of the associated distributions. For example,

whether the temperature of a particular system falls within a certain range at a particular time is a

falsifiable prediction. (See also Ex. 1 below.) In any case, the extension to having the computer’s

output be a probability distribution is fairly straight-forward — see the discussion just before

Thm. 2.

Example 1 (conventional prediction of the future): Say that our universe contains a system S

external to our computer that is closed in the time interval [0, T], and let u be the values of the ele-
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ments of a set of canonical variables describing the universe. α is the t = T values of the compo-

nents of u that concern S, measured on some finite grid G( UT ) of finite precision. q is this

definition of α with G and the like fully specified. (So q is a partition of the space of possible uT,

and α is an element of that partition.) Q is a set of such q’s, differing in G, whose associated

answers our computer can (we hope) predict correctly. By determinism, under the convention that

we are interested in questions concerning the t = T state of the universe, we can replace any grid

G( UT ) with a grid G(
^
U ).

The input to the computer is implicitly reflected in its t = 0 physical state, as our interpretation of

that state. In this example (though not necessarily in general), that input specifies what question

we want answered, i.e., which q and associated T we are interested in. It also delineates one of

several regions R ⊆ ^
U, each of which, intuitively, gives the t = 0 state of S and S’s Hamiltonian.

Throughout each such R, the system S is closed from the rest of the universe during t ∈ [0, T].

Since the precise R delineated specifies a set of possible values of u0 in full, not just of S’s t = 0

state, it is an element of a (perhaps irregular) finite precision grid over
^
U, G'. If, for some R,

q( û ) has the same value for all û ∈ R, then this input R uniquely specifies what α is for any asso-

ciated û. If this is not the case, then the R input to the computer does not suffice to answer ques-

tion q. So for any q and region R both of which can be specified in the computer’s input, R must

be a subset of a region q-1(α) for some α.

Implicit in this definition is some means for correctly getting the information of the value R into

the computer’s input. In practice, this is often done by having had the computer coupled to S

sometime before time 0. As an alternative, rather than specify R in the input, we could have the

input contain a “pointer” telling the computer where to look to get the information R. (The analy-

sis of this paper holds no matter how the computer gains access to R.)

In practice the input, giving R, q, and T, is an element of a partition over an “input section” of our

computer. In such a case, the input is itself an element of a finite precision grid over U0, G"( U0 ).

So an element of G" specifies an element of G (namely q) and element of G' (namely R).

As usual any G"( U0 ) can be re-expressed as a grid G"(
^
U ), under the convention that we are
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interested in inputs imposed on the t = 0 state of the computer. Note that if initialization were to be

at a time t ≠ 0, it would correspond to a different grid G"(
^
U ), in general, since the values of the

computer’s input degrees of freedom may vary in time.

Given its input, the computer (tries to) form its prediction for α by first running the laws of phys-

ics on a u0 having the specified value as measured on G', according to the specified Hamiltonian,

up to the specified time T. The computer then applies q(.) to the result. Finally, it ensures that this

prediction for α is in its output section at time τ. More precisely, there is a fourth finite precision

grid G"' over Uτ defined by the state of the computer’s output section at time τ. The computer uses

that grid to “write out” (what is interpreted as) its prediction for which region in U the universe

will be in at T, that prediction being formally equivalent to a prediction of a region in
^
U. The goal

is to have it do this, with the correct value of α, by time τ ≤ T.

Since G"'( Uτ ) induces a grid over
^
U, G"'(

^
U ), we can dispense with the “time τ ≤ T” stipulation;

the goal is simply to have the universe be in the element of G"'(
^
U ) associated with the current

value of α. As with changing the time of input, changing the time τ of output will change the grid

G"'(
^
U ), in general

Consider again the case where there is in fact a correct prediction, i.e., where R is indeed a subset

of the region q-1(α) for some α. For this case, formally speaking, “all the computer has to do” in

making its prediction is take the region R and question q delineated in its input and recognize

which region in the partition q contains the region R. Then it must output the label of that region

in q onto its output. In practice though, q and R are usually “encoded” differently, and the com-

puter must “translate” between those encodings to recognize which region q-1(α) contains R; this

translation constitutes the “computation”.

Note that all of this holds even if S’s dynamics is stochastic, and/or S’s state is never deterministi-

cally fixed to greater precision that that of G'.

Generalizing these considerations, we define a computer’s input to be a mapping IN(.) from û

∈ ^
U to a space of inputs, {IN}. Intuitively, it is a partition of

^
U (see the appendix). So for exam-
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ple “initialization” of a computer as conventionally conceived, which sets the t = 0 state of a phys-

ical system underlying the computer, is simply a special case. In that special case, the value taken

by the input mapping differs for û and û' if the t = 0 state of the computer input portion of the uni-

verse, as specified by û, differs from the t = 0 state of the computer input portion of the universe

as specified by û'. Similarly, we can define a computer’s output to be a mapping OUT(.) from û

∈ ^
U to a space of outputs, {OUT}. In such an output partition, the particular element labels

{OUT} consist of all pairs {OUTq ∈ Q, OUTα ∈  A(OUTq)}, for some Q and associated A(.).

A physical computer then is simply the double of an input partition and an associated output

partition. We say that OUTq is the “question posed to the computer”, and OUTα is “the com-

puter’s answer”. As considered in this paper, all that computation amounts to is the delineation of

the logical implications for which element(s) of the output partition contain
^
u, given that a partic-

ular provided input partition element contains
^
u. Intuitively, a computer is a set of question-

answer pairs (outputs) together a way of choosing among those paris (inputs). We are interested in

whether the element of the output partition induced by a particular input correctly describes the

universe, as restricted by that input. So in particular, we are not considering counter-factual “com-

putation” involving premises that conflict with the actual state of the universe.

The definition of a physical computer presented here is broader than computers that work by

the process outlined in Ex. 1. A physical computer does not require that an input always implies

only a single answer, for example. In addition, the computer in Ex. 1 has the laws of physics

explicitly built into its “program”. But our definition allows other kinds of “programs” as well.

Our definition also allows other kinds of information input to the computer besides q and a region

R (which together with T constitute the inputs in that example above). We will only need to

require that there be some t = 0 state of the computer that, by accident or by design, induces the

correct prediction at t = τ. This means we do not even require that the computer’s initial state IN

“accurately describes” the t = 0 external universe in any meaningful sense. Our generalization of

Ex. 1 preserves analogues of the grids G (in Q(.)), G" (in IN(.)) and G"' (in OUT(.)), but not of the

grid G'.
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state of the physical computer. In other words, as we use the terms here, the computer’s “input”

need not be specified in some t = 0 state of a physical device. Indeed, our definition does not even

explicitly delineate the particular physical system within the universe that we identify with the

computer. (A physical computer is simply an input partition together with an output partition.)

This means we can even choose to have the entire universe “be the computer” (see Sect. 4).

As another example of the freedom to extend Ex. 1, note that in practice we may want to phys-

ically couple our computer to the external universe, for example via an observation apparatus that

initializes the computer’s inputs so that they reflect information about the system being predicted.

Such a coupling would be reflected in û. If we wish though, we can exploit the freedom in its def-

inition to modify the input mapping, in such a way that it too directly reflects this kind of cou-

pling. For example, under the proposed modification, if we want the input section of the

computer’s underlying physical system to be a bit b1 that equals the t = -1 state of some bit b2 con-

cerning the external universe, then we could have IN( û ) = IN(b1(u0), b2(u-1)) = b1(u0) if b1(u0)

= b2(u-1), and have it equal a special “input error” value otherwise. If we do have a physical cou-

pling mechanism, and if that mechanism is reliable — something reflected in û — then this third

setting will never occur, and we can ignore it. However use of this modified IN allows us to avoid

explicitly identifying such a mechanism and simply presume its existence. So long as the third

setting never occurs, we can analyze the system as though it had such a (reliable) physical cou-

pling mechanism.

We can also modify Ex. 1 in other ways that do not involve input. For example, we can have S

be open (or perhaps even be the entire universe). We can also have the computer observe the sys-

tem being predicted after initialization (so that that initialization only serves to specify what

should be observed). This is one of the major reasons why we do not require that the value IN

uniquely fixes OUTα( û ), to not preclude the possibility of OUTα being based on observations of

the external world that occur after the setting of the computer’s input. (Other reasons for not hav-

ing IN fix OUTα arise in the context of weak predictability; see the discussion in the appendix
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preceding Ex. 2.) Other examples of how to modify Ex. 1 are presented below in the discussion of

retrodiction and control.

We will sometimes find it useful to consider a copy of a particular computer C = (IN, OUT).

This is any computer C' = (IN', OUT') where {IN'} = {IN}, {OUT'} = {OUT}, and the (set-val-

ued) function of all outputs that are possible given a particular input is the same for both comput-

ers. In other words, the logical implications relating values of IN' and OUT' are the same as those

relating values IN and OUT, so that both computers have the same input-output mapping. As a

particular example, if a scientist at a particular time (i.e., a computer) C in some space
^
U is trans-

formed into a copy C' in some
^
U', there is no way that (s)he can ascertain that that transformation

has occurred. The two scientists interpret their input as the same question and in response provide

the same answer (an answer generated via prediction and/or observation — see the discussion

below Thm. 2).

Consider again the computer in Ex. 1. Recall that if the initialization time 0, question time T,

and/or output time τ are changed, then in general the partitions IN and/or OUT may change. So in

particular, the time-translated version of a computer C differs from C, in general. However the

“time-translated version of C” is a copy of C (or at least it makes sense to define the term that way,

so long as the laws of physics are time-translation invariant). Similarly, a spatially-translated ver-

sion of C is only a copy of C in general, rather than identically equal to C. So formally speaking,

the sequence of computations the box on your desk makes over a period of a month is a set of

physical computers, all copies of one another, applied to the same
^
u.

ii) Intelligible computation and distinguishable computers

Consider a conventional physical computer, consisting of an underlying physical system

whose t = 0 state sets IN( û ) and whose state at time τ sets OUT( û ), as in Ex. 1. We wish to ana-

lyze whether the physical system underlying that computer can calculate the future sufficiently

quickly. In doing so, we do not want to allow any of the “computational load” of the calculation to

be “hidden” in the mappings IN(.) and OUT(.) by which we interpret the underlying physical sys-
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tem’s state, thereby lessening the computational load on that underlying physical system. Stated

differently, we wish both the input and the output corresponding to any state of the underlying

physical system to be “immediately and readily intelligible”, rather than requiring non-trivial sub-

sequent computing before it can be interpreted. As will be seen in our formalization of this

requirement, it is equivalent to stipulating that our computer be flexible enough that there are no

restrictions on the possible questions one can pose to it.

One way to formalize this intelligibility constraint would entail imposing capabilities for self-

reference onto our computer. This has the major disadvantage of restricting the set of physical

computers under consideration. As an alternative, to formalize the notion that a computer’s inputs

and outputs be “intelligible”, here we consider universes having another computer which can con-

sider the first one. We then require that that second computer be able to directly pose binary ques-

tions about whether the first computer’s prediction correctly corresponds to reality, without

relying on any intervening “translational” computer to interpret that first computer. (Note that

nothing is being said about whether such a question can be correctly answered by the second

computer, simply whether it can be posed to that computer.) So we wish to be able to ask if that

output is one particular value, whether it is another particular value, whether it is one of a certain

set of values, etc. Intuitively, this means that the set Q for the second computer must contain

binary functions of OUT(.) of the first computer. Finally, we also require that the second computer

be similarly intelligible to the first one.

These two requirements are how we impose the intuitive requirement that both computers be

“readily intelligible” as predictions concerning reality; they must be readily intelligible and

checkable to each other. More precisely, define an intelligibility function for any ^U-partition π to

be a binary-valued function of the elements of that partition. (We call a set of such functions an

intelligibility set.) If the set of questions we can pose to a computer C includes all such functions,

we say that π is intelligible to C. For such a case, C can have posed any question concerning the

universe as measured on π. This flexibility in C ensures that C’s output partition isn’t “rigged

ahead of time” in favor of some particular question concerning π. The obvious modifications are
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assumed if we talk about π being intelligible to C with respect to some intelligibility set F.

More prosaically, to motivate intelligibility we can simply note that we wish to be able to pose

to C1 any prediction question we can formulate. In particular, this means we wish to be able to

pose to C1 any questions concerning well-defined aspects of the future state of C2. Now consider

having C2 be a conventional computer based on an underlying physical system. Then we want to

be able to predict C2’s output at time τ as OUT2(uτ). Therefore in addition to any other questions

we might want to be able to pose to it, we want to be able to pose to C1 questions involving the

value OUT2(uτ) (e.g., is that value equal to some x1? to some x1 or x2? to that x1 or some other

x3? etc.). We want C1 to “understand” OUT2 sufficiently well to be able to pose binary-valued

questions concerning it. This is equivalent to requiring intelligibility.

A problem with this definition of intelligibility is that one can prove there cannot be a com-

puter to which one can even pose all possible questions concerning the physical world. (This is

established formally as Thm. 1 in the appendix.) The problem arises when we try to pose intelligi-

bility functions concerning the computer C’s output partition to C itself. Intuitively, it is not possi-

ble for the set of C’s question partitions to include the (larger) set of all binary-valued functions of

those partitions.

To circumvent this problem, from now on we implicitly redefine intelligibility functions con-

cerning output partitions to be question-independent, i.e., to not depend on the precise question

encoded in OUT, only on the answer component. Intuitively, restricting ourselves to these kinds of

intelligibility functions means we are only requiring that the predicted partition label of one phys-

ical computer be directly readable on the other computer’s input, not that the full partition of the

first computer’s question also be directly readable. Given the restriction to such question-indepen-

dent intelligibility functions, we say that two physical computers C1 and C2 are mutually intelli-

gible if the output partition of C2 is intelligible to C1 and vice-versa.

Formally speaking, to make sure that the ranges of intelligibility functions match up with

those of output partitions when working with question-independent intelligibility functions, often

we should consider the full prediction partition, OUTp( û ) ≡ (A(OUTq( û ), OUTα( û )), rather
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than just OUTα( û ). For example, this is the case in the formal definitions of weak and strong

predictability (see the appendix). For pedagogical simplicity though, we will often just refer to the

“computer’s answer” or the “computer’s prediction” rather than explicitly state whether we mean

OUTp. As always, such formal concerns are dealt with in full in the appendix.

Finally, our unpredictability results will rely on our two physical computers being distinct

from one another. They must not be so intertwined that how we can initialize one of them is deter-

mined by how we initialize the other. More formally, just as we require that all input values IN ∈

{IN} are physically realizable states of a single physical computer, so all pairs of the two com-

puter’s inputs values must be physically realizable states of the two physical computers. When

this is the case for we say that the computers are pairwise (input) distinguishable. When this is

the case for each pair of a set of computers, we say that the set is pairwise-distinguishable, and

when it is possible to have any joint combination of the input values of all members of the set we

say we have full distinguishability.

iii) Predictable computation

We can now formalize the concept of a physical computer’s “making a correct prediction”

concerning another computer’s future state. We say that a ^U-partition π is weakly predictable to

C if two conditions hold. First, π must be intelligible to C. Second, for every intelligibility func-

tion concerning π, f, ∃ IN ∈ {IN} that weakly induces f, i.e., a value IN such that IN(
^
u ) = IN

forces the prediction to equal f( û ). We will say a computer C' with output OUT'(.) is weakly pre-

dictable to another computer C, and write C > C', if the answer partition of C' is weakly predict-

able to C. If we just say “predictable” it will be assumed that we mean weak predictability.

See the variants of Ex. 2 in the appendix for illustrations of weakly predictable sets of comput-

ers. These demonstrate, among other things, that the “>” relation need not be transitive. In fact,

even if some C1 could predict C2’s input simultaneously with predicting C2’s answer, it still

would not follow that C1 can predict π just because C2 can. This is because C1 has no ability to set

its input to have IN2 be one of the values involved in C2’s predicting π. (Strong predictability,
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introduced below, rectifies this.)

This definition of predictable is not strong at all. It doesn’t require that there be a sense in

which the information input to C is interpretable as a description of the external universe. (This

freedom is what allows us to avoid formalizing the concept of whether some input does or does

not “correctly describe” the external universe.) Indeed, we don’t even require that OUTq( û ) = q.

Even if the computer gets confused about what question it’s answering, we give it credit if it

comes up with the correct answer to our question. In addition, consider some intelligibility func-

tion f and associated IN. Then recall that we do not even forbid the possibility of two û’s that are

both consistent with that IN and that both obey OUTα( û ) = f( û ), but that nonetheless have dif-

ferent OUTα( û ). (Accordingly, lack of predictability implies merely that for some f a correct

answer cannot be guaranteed, rather than that a wrong answer is assured.)

Furthermore, while motivated by the task of predicting the future, the definition of weak pre-

dictability presented here is broader, concerning any computation that can be cast in terms of

inputs, questions about the universe, and associated answers. Accordingly, no times like 0, τ or T

occur in the definition of ‘predictable’ or in any of the terms going into that definition. Even when

there is temporal ordering of inputs, outputs, and the prediction involved in the computation, they

need not have T > τ > 0. We could just as easily have T < τ < 0 or even T < 0 < τ. So the results

presented below will establish the uncomputability of the past as well as of the future. They also

can be viewed as establishing the fallibility of any observation apparatus and of any control appa-

ratus. These points will be returned to below.

Finally, it is important to realize that the requirement of intelligibility can be removed from

the definition of predictability, and many of the results presented below will still hold (e.g., Thm.

2 will still hold). That requirement can be helpful in extensions of this paper’s analysis however,

and certainly seems “natural”. Hence its inclusion in our definition. See the discussion leading up

to Def. 4 in the appendix for more discussion of this point.
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2. THE UNPREDICTABILITY OF THE FUTURE

i) The impossibility of assuredly correct prediction

Even if we can pose all the questions in some set to a computer, that says nothing about

whether by appropriate choice of input the computer can always be assured of correctly answer-

ing any question from that set. In fact, even if we restrict attention to question-independent intelli-

gibility sets, no physical computer can be assuredly correct in its predictions concerning the

future.

Whereas the impossibility expressed by Thm. 1 follows from cardinality arguments and the

power set nature of intelligibility sets, the impossibility of assuredly correct prediction follows

from the presence of the negation operator in a (question-independent) intelligibility set. As an

example of the logic underlying the proof, consider a pair of computers predicting the future as in

Ex. 1. Have both of the computers have answer subsections that are binary and have initialization

time 0 and question time τ. Have one of the two computers predict the other’s output bit and then

halt and freeze its output at some time previous τ < T, whereas that other computer predicts the

negation of the first one’s output bit just before it too halts. Since both computers’ output calcula-

tions must halt by τ, they will contradict each other when the prediction time arrives. Therefore

they cannot both be correct in their predictions.

This kind of reasoning can be extended to apply to any pair of physical computers, not just

ones that work as in Ex. 1. For example, no “halting and freezing” is required in general. (Indeed,

in practice C cannot guarantee that its output will be frozen with a particular output value that

does not change until after some time τ, since it is always possible that an outside system comes in

and perturbs C.) Even the times 0, τ, and T are superfluous. This is formally stated in the follow-

ing theorem:

Theorem 2: Consider any pair of distinguishable physical computers {Ci : i = 1, 2}. It is not pos-

sible that both C1 > C2 and C1 < C2.
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It should be emphasized that Thm. 2 holds no matter how large and powerful our computers

are; it even holds if the “physical system underlying” one or both of our computers is the whole

universe. It also holds if instead C2 is the rest of the physical universe external to C1. As a particu-

lar instance of this latter case, the theorem holds even if C1 and C2 are physically isolated from

each other ∀ t > 0. (Results similar to Thm. 2 that rely on physical coupling between the comput-

ers are presented in [33].)

Rather than viewing it as imposing limits on computers, Thm. 2 can instead be viewed as

imposing limits on the computational capabilities of the universe as a whole. From this perspec-

tive that theorem establishes that the universe cannot support parallel computation in which all the

nodes are sufficiently powerful to correctly predict each other’s behavior. In addition, it is possible

to generalize this paper’s formalism to stochastic universes and/or computers. In that extension

Thm. 2 takes the form of saying it is impossible for the probability of correct prediction for two

computers to both equal 1. An open question is what the highest ε is such that two computers can

simultaneously have it as their probability of correct prediction. (See discussion in the appendix

just before Lemma 1.)

ii) Implications of Thm. 2

Let C be a computer supposedly capable of correctly predicting the future of any system S if

information concerning the initial state of S is provided to C, as in Ex. 1 above. Assume that C is

not so powerful that the universe is incapable of supporting a copy of C in addition to the original.

(This is certainly true of any C conceivably built by humans — see the formal definition of a copy

of a physical computer in Def. 3 in the appendix.) Have S be such a copy of C. We assume that for

any pair of t = 0 input values for C, there is at least one world-line of the universe in which C’s

input is one of those values and the other value constitutes the input of C’s copy (i.e., we have

input-distinguishability).

Applying Thm. 1 to our two computers, we see that there is a finite intelligibility set that is not
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intelligible to C, i.e., there are questions concerning an S that cannot even be posed to C. (More

formally, there is either such a set for C or for its copy, S.) In addition, by Thm. 2, there is a finite

question-independent (and therefore potentially pose-able) intelligibility set concerning S that is

not predictable to C. In other words, there must be a question-independent intelligibility function

concerning S that C predicts incorrectly, no matter what the input to C.

The binary partition over UT induced by this unpredictable intelligibility function constitutes a

question concerning the time T state of S. In addition every one of the set of potential inputs to C

corresponds to a subset of U0, and therefore corresponds to a subset of the possible states of C’s

“input section” at time 0. (In Ex. 1, IN(.) is set up so that every element in {IN} corresponds to

one and only one state of C’s input section at time 0.) Similarly, every output of C corresponds to

a subset of Uτ and therefore a subset of the possible states of C’s “output section” at time τ.

Accordingly, our result means that there is no input to C at time 0 that will result in C’s output at

time τ having the correct answer to our question concerning the time T state of S. For 0 < τ < T,

this constitutes a formal proof that no computer can predict the future faster than it occurs. (Or

more precisely, that the universe cannot support more than one copy of such a computer.)

This means, in essence, that Laplace was wrong: even if the universe were a giant clock, he

would not have been able to reliably predict the universe’s future state before it occurred. Viewed

differently, Thm. 2 means that regardless of noise levels and the dimensions and other characteris-

tics of the underlying attractors of the physical dynamics of various, there cannot be a time-series

prediction algorithm [9] that is always correct in its prediction of the future state of such systems.

Note that there is no requirement that the initialization time, question time, and/or output time

of the computer S’s partitions equal 0, T, and τ respectively, the values they have for C. All that is

required is that this S be a copy of C. In particular the possibility is allowed that S is a temporal

translation of C, either forward or backward in time.

In addition, as mentioned previously, the result also holds when the initialization time is 0 and

the output time is some τ > 0, but the question time T < τ. In other words, the computer can run an

arbitrarily long time past T and still must make mistakes. Perhaps more surprisingly, the result
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still holds if not only is T < τ, but in addition T < 0. In this case the result denies the possibility of

assuredly correct “prediction” of what occurred in the time preceding initialization. Intuitively

speaking, memory is just as fallible as predicting the future. This should not be surprising. After

all, no temporally asymmetric law like the second law arises in our analysis, so all the results must

be time-symmetric. In fact, the temporally (a)symmetric nature of the laws of the universe are

irrelevant to Thm. 2  —  that theorem treats the entire universe’s world-line as a single entity.

In opposition to this formal proof of the necessary fallibility of retrodiction, one is tempted to

argue that no contradiction results if I ask two computers to record each others’ past states, only

with one of them negated (to try to follow along with the proof of Thm. 2). So the claim that Thm.

2 still holds for T < 0 can’t be true, it wold appear, and infallible retrodiction is allowed. To

resolve the conflict between this intuitive argument and the explicitly T-independent nature of the

proof of Thm. 2, note that Thm. 2 only says that there is some recording at which the computer

must fail. The set of all such retrodictions encompasses many that are quite complicated. In par-

ticular, the liar’s paradox at the heart of Thm. 2 will arise when the recordings concern the

dynamic pre-images of those future states that establish the fallibility of prediction the future.

To illustrate this in more detail, first note that if two computers are physically isolated from

each other for all time, there is no way each can reliably record the others’ past state. So our two

putative retrodicting computers must be physically coupled, and therefore must be open systems.

Now consider a conventional digital version of such a computer, C, whose output partition ele-

ments are labelled by the t = τ states of its output bits. So each possible output of C is the set of all

possible states of the entire universe that are consistent with some particular t = τ pattern of C’s

output bits. Call such a set, of all possible states consistent with the pattern of C’s output bits at

time τ, “aligned” with that pattern / time pair. In general, since C is open, a set of states that are

aligned with an output pattern of C’s at time τ will not dynamically map to a set that is aligned

with those bits at an earlier time T < 0. (Instead, generically, the temporal projection of those

states back in time will be consistent with multiple output patterns over C at that earlier time, with

each such pattern accompanied by only a proper subset of all possible associated states of the



23

external universe.) In the language of Ex. 1, while G"'( Uτ ) is defined purely in terms of the t = τ

state of C’s output bits, this need not be the case for G"'( Ut≠t ).

So to induce the liar’s paradox we pose to S a question concerning t = T that does not concern

some set of states aligned with C’s output bits at that time. Rather the question we pose concerns

the pre-images (over U) of the individual t = τ U-space partition elements that index C’s t = τ out-

puts. The same is true for the computer C’s retrodiction concerning S. It is these kinds of ques-

tions that establish the fallibility of retrodiction.

While these results concerning both prediction and retrodiction hold if C and S are isolated

from one another ∀ t > 0, they also hold if C and S are coupled at such times. Indeed, they hold no

matter what the form of such coupling. So in particular, we can have the coupling consist of C’s

“observing” some aspect of S. As an example, in a conventional observation experiment, what

variable in S is observed at time τ is determined by characteristics of the experimental apparatus

at that time. In other words, it is determined by certain characteristics of u(τ), i.e., by certain char-

acteristics of ^u, i.e. by where ^u is in a particular partition over ^U. Each element in that partition

corresponds to a different variable to be observed, i.e., to a different question. So in such conven-

tional observation, there is an implicit question-valued partition of ^U. The “observation” consists

of providing an answer to some associated question. In other words, in conventional observation

the choice of what to observe, together with the resultant observation, constitutes an output parti-

tion. The input partition initializing the experiment then is a way of forcing (a ^u which gives) an

output partition with the desired question, hopefully also having the correct associated answer.

(Note that in this interpretation of a physical computer as an observation device, its input will in

general not uniquely fix its output answer, unlike the case with prediction discussed in Ex. 1.)

So observation is simply an instance of physical computation. As a result, Thm. 2 establishes

the impossibility of a device C that can, infallibly, take any specification of some characteristic of

the universe as input, and then observe the value of that characteristic. This impossibility holds

independent of considerations of light-cones and the like, and in fact holds just as well in a uni-

verse with c = ∞ as it does in ours. (Alternatively, the time at which the characteristic is to be

observed can be specified in the computer’s input, and therefore can be far enough into the future

so that the light-cone emanating from the setting of that input can intersect with that of the charac-
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teristic being observed.) In all this, Thm. 2 establishes that any putative general-purpose observa-

tion apparatus must, for some system to be observed, make a mistake in its claimed observation of

that system.

This unobservability constitutes a sort of non-quantum-mechanical “uncertainly principle”.

Just like the Copenhagen version of the quantum mechanics uncertainty principle, the physical

computation uncertainty principle relies on having an “intelligent” system perform the observa-

tion. In contrast to the quantum mechanics case however, in the physical computation version of

the uncertainty principle, such an “intelligent observational system” is given a formal definition

(as a physical computer).

There is nothing in the math that forces C to play a “passive observational role” in the cou-

pling with S. So we can just as well view Thm. 2 as establishing the impossibility of an apparatus

capable of ensuring that there is no discrepancy between a value in its “answer section” and an

associated characteristic of a system S external to C. (Note also that while weak predictability

does not require that IN fixes the value of OUTα independent of S, nor does it forbid IN to fix

OUTα; it only requires that OUTα correctly answers the associated question concerning S.)

Accordingly, there is no such thing as a general-purpose controller that works perfectly, in all sit-

uations.

These impossibility results hold even if one tries to have the input to the computer explicitly

contain the correct value of the prediction or observation. (Note that since the universe is single-

valued and deterministic, such a value must exist.) Impossibility also obtains if the input is sto-

chastic, since it holds for each input value individually.

3. THE MATHEMATICAL STRUCTURE RELATING PHYSICAL COMPUTERS

There is a rich mathematical structure governing the possible predictability relationships

among sets of physical computers, especially if one relaxes the presumption that they are pairwise

input-distinguishable. This section presents some of that structure.
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i)  The graphical structure over a set of computers induced by weak predictability

Thm. 2 directly addresses predictability relations within pairwise-distinguishable sets of mul-

tiple computers. However one can also use it to derive results for the predictability relationships

within other types of sets of computers. For example, consider a set of n physical computers {Ci}

such that C1 > C2 > ... > Cn > C1. If that set is only pairwise-distinguishable, we can have C1 > C2

> ... > Cn but not have C1 > Cn. (See Ex. 2" in the appendix.) So it would seem that Thm. 2 does

not preclude having Cn > C1, i.e., does not preclude predictability cycles. However this is not the

case if one considers sets that are more than just pairwise distinguishable. An example is the fol-

lowing corollary of Thm. 2:

Corollary 2: It is not possible to have a (fully) distinguishable set of n physical computers {Ci}

such that C1 > C2 > ... > Cn > C1.

What are the general conditions under which two computers can be predictable to one

another? By Thm. 2, we know they aren’t if they’re input-distinguishable. What about if they’re

one and the same? No physical computer is input-distinguishable from itself, so Thm. 2 doesn’t

apply to this issue. However it still turns out that Thm. 2’s implication holds:

Theorem 3: No physical computer is predictable to itself.

Intuitively, this result follows from the fact that a computer cannot make as its prediction the

logical inverse of its prediction. An important corollary of this result is that no output partition,

considered in isolation of any input partition, is predictable to a physical computer that has that

output partition. Combining Thm. 3 and Coroll. 2 and identifying the predictability relationship

with an edge in a graph, we see that fully distinguishable sets of physical computers constitute

(unions of) directed acyclic graphs. The allowed graphical structure of other kinds of sets (e.g.,
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pairwise-distinguishable ones) is not well-understood at present.

ii) God computers, omniscience, and variants of error correction

When considering sets of more than two computers, it is important to realize that while it is

symmetric, the input-distinguishability relation need not be transitive. Accordingly, separate pair-

wise distinguishable sets of computers may partially “overlap” one another. Similarly, stipulating

the values of the inputs of any two computers in a pairwise-distinguishable set may force some of

the other computers in that set to have a particular input value.

Coroll. 2 does not apply to a pairwise-distinguishable set. To analyze such sets, define a god

computer to be any physical computer in a pairwise distinguishable set such that all other physi-

cal computers in that set are predictable to the god computer. By Thm. 2, each such set can con-

tain at most one god computer. There is at most one computer in any pairwise distinguishable set

that can correctly predict the future of all other members of that set, and more generally at most

one that can accurately predict the past of, observe, and/or control any system in that set.

Even a god computer may not be able to correctly predict all other computers in its pairwise

distinguishable set simultaneously. The input value it needs to adopt to correctly predict some C2

may preclude it from correctly predicting some C3 and vice-versa. One way to analyze this issue

is to consider a composite partition OUT2×3 defined by the output partitions of C2 and C3. We can

then investigate whether and when our god computer can weakly predict the composite output

partition. To that end, define a computer C1 in a set of pairwise-distinguishable computers {C1,

C2, ...} to be omniscient if the composite output partition OUT2×3×... is predictable to C1. It is

straight-forward to verify that an omniscient computer is a god computer.

Now in general, one might presume that two non-god computers in a pairwise-distinguishable

set could have the property that, while individually they cannot predict everything, considered

jointly they would constitute a god computer, if only they could work cooperatively. An example

of such cooperativity would be having one of the computers predict when the other one’s predic-

tion is wrong. It turns out though that under some circumstances the mere presence of some other
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computer in that pairwise distinguishable set may make such error-correction impossible, if that

other computer is omniscient.

As an example of this, say we have three pair-wise distinguishable computers C1, C2, C3,

where C3 always answers with a bit (i.e., /∃ q3 ∈ OUTq
3 such that A(q3) |⊆ B). We want C2’s out-

put to “correct” C3’s predictions, and also have those predictions made by C3 (potentially) con-

cern C1. So have C1 be intelligible to C3. Then it turns out that due to Thm. 2, if C1 is omniscient,

it is not possible that C2 always correctly outputs a bit saying whether C3’s answer is the correct

response to C3’s question. This is stated formally (and then derived) as Corollary 3 in the appen-

dix. This result even holds if OUT2×3 is only intelligible to C1, without necessarily being predict-

able to it.

Coroll. 3 can be viewed as a restriction on the efficacy of any error correction scheme in the

presence of a (distinguishable) omniscient computer. There are other restrictions that hold even in

the absence of such a third computer. An example arises if we consider two distinguishable mutu-

ally intelligible physical computers C1 and C2, where both A(OUT1
q) ⊆ B and A(OUT2

q) ⊆ B ∀

OUT1
q ∈ {OUT1

q} and OUT2
q ∈ {OUT2

q}. For such computers, it turns out that Thm. 2 means

that it is impossible for C1 and C2 to be “anti-predictable” to each other, in the sense that for each

of them, the prediction they make concerning the state of the other can always be made to be

wrong by appropriate choice of input. This is proven as Corollary 4 in the appendix.

iii) Physical computation analogues of Turing Machines

There are several ways that one can relate the mathematical structure of physical computation

to that of conventional computer science. Here we sketch the salient concepts for one such rela-

tion coupling physical computation and the mathematical structure governing Turing machines

(TMs).

A TM is a device that takes in an input string on an input tape, then based on it produces

a sequence of output strings, either “halting” at some time with a final output string (when an

internal “halt” state is entered), or never halting. As an alternative, the fact that the halt state has /
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hasn’t been entered by any time can be reflected in a special associated pattern in the output

string, in which case the sequence of output strings can always be taken to be infinite. As expli-

cated above, in the real world inputs and (sequences of) outputs are elements of partitions of ^U.

So in one translation of TMs to physical computers, strings on tapes are replaced with elements of

the partitions IN(.) and OUT(.). In the most natural way of doing this, {OUTq} consists of a single

partition q that is identical to the input partition, with A(OUTq) being the set of all strings. Having

OUT(
^
u ) specify both IN and α is analogous to the conventional way of implementing reversible

computation [2-6].

Rather than through a set of internal states, read/write operations, state-transition rules, etc.,

the transformation of inputs to outputs in a physical computer is achieved simply through the def-

inition of the pair of an associated input partition and output partition. For a TM that declares in

its output string whether it has halted, the physical computation analogue of whether a computa-

tion will ever halt is simply whether ^u is in some special subset of {OUT}. Although not formally

required, in the real world IN(.) and OUT(.) usually differ. In this they are analogous to TM’s with

multiple tapes rather than conventional single-tape TMs.

An alternative to identifying the full output partition of a physical computer with a TM’s out-

put tape, motivated by the definition of predictability, is to identify the coarser partition ^u →

OUTα( ^u ) with a TM’s output tape (or more precisely the partition ^u → OUTp( ^u ) =

(A(OUTq( ^u ), OUTα( ^u )) with a TM’s output tape — cf. the definition of “prediction partition”

in the appendix). Using this question-independent structure is loosely analogous to a TM’s being

able to overwrite the “question” originally posed on its tape when producing its “answer” on that

tape. We will adopt this identification from now on, identifying the physical computation ana-

logue of a TM as an input partition together with the answer component of an output partition.

This identification motivates several analogues of the Halting theorem. Since whether a partic-

ular physical computer C2 “halts” or not can be translated into whether its output is in a particular

region, the question of whether C2 halts is a particular intelligibility function of C2. Correctly

answering the question of whether C2 halts means predicting that intelligibility function of C2. In



29

the context of physical computation it is natural to broaden the issue to concern all intelligibility

functions of C2. Accordingly, in this analogue of the claim resolved for TM’s (in the negative) by

the Halting theorem, one asks if it is possible to construct a physical computer C1 that can predict

any computer C2. To answer this, simply consider the case where C2 is a copy of C1. By applying

Thm.’s 2, 3 and 6 to this case, one sees that the answer is no, in agreement with the Halting theo-

rem. (See also Coroll. 4.)

There exist a number of alternative physical computer analogues of the Halting problem.

Though not pursued at length here, it is worth briefly presenting one such alternative. This alterna-

tive is motivated by arguing that, in the real world, one is not interested so much in whether the

computation will ever “halt”, but rather whether the associated output (say conventionally “read”

at some pre-fixed time) is “correct”. If we take “correct” to be relative to a particular question, this

motivates the following alternative analogue of the Halting theorem: Given any set of physical

computer {Ci}, there is no member of that set C such that for every C' ∈ {Ci}, (i) C' is intelligible

to C; and (ii) for all questions q' ∈ {OUT'q}, there is an IN value which induces C to answer with

a 1 if and only if the answer of C' to q' is correct. See Theorem 4 in the appendix.

iv)  Strong predictability

At the other end of the spectrum from distinguishable computers is the case where one com-

puter’s input can fix another’s, by being observed by that other computer (or perhaps even by set-

ting that other computer’s input more directly). It is when such relationships hold that physical

computation analogues of various members of the Chomsky hierarchy, and particularly Turing

machines, arise.

To capture such a relationship, we say that a computer C2 is strongly predictable to C1 (or

equivalently that C1 can strongly predict C2), and write C1 >> C2 (or equivalently C2 << C1) if

two conditions hold. First, C2 must be intelligible to C1. Second, for every intelligibility function

concerning C2, f, and for every IN2, ∃ IN1 ∈ {IN1} that strongly induces the pair (f, IN2). That is,

there exists a value of IN1 such that IN1(
^
u ) = IN1 forces OUT1

p( û ) to equal (A(f), f( û )) and
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reflects the fact that  IN2( ^u ) = IN2 (or alternatively, forces it to be the case that IN2( ^u ) = IN2).

If C1 can strongly predict C2, then for any IN2 and associated answer OUT2
α — for any com-

putation C2 might undertake — there is an input to C1 that is uniquely associated with IN2 and

that causes C1 to output (any desired question-independent intelligibility function of) the associ-

ated OUT2. By also ensuring that IN2( ^u ) = IN2, we ensure that C1 is outputting C2’s conclusion

for the desired premise, IN2. Intuitively, there is some invertible “translating” map that takes C2’s

input and “encodes” it in C1’s input, in such a way that C1 can “emulate” C2 running on C2’s

input, and thereby produce C2’s associated output. In this way C1 can emulate C2, much like uni-

versal Turing machines can emulate other Turing machines. (See the definition of a universal

physical computer below.)

Strong predictability of a computer implies weak predictability of that computer. (Unlike with

weak predictability, there is no such thing as strong predictability of a partition.) So results con-

cerning weak predictability that are not predicated on input distinguishability (which is impossi-

ble for strong predictability) still hold if they are changed by replacing weak predictability with

strong predictability. This includes in particular Thm. 3 and Coroll. 2 (but not Thm. 2).

Weak predictability does not imply strong predictability however. Moreover, the mathematics

for sets of physical computers some of which are strongly predictable to each other (and therefore

not distinguishable) differs in some respects from that when all the computers are distinguishable

(the usual context for investigations of weak predictability). An example is the following result,

which shows that strong predictability always is transitive, unlike weak predictability.

Theorem 5: Consider three physical computers {C1, C2, C3}, and a partition π, where both C3

and π are intelligible to C1.

i)  C1 >> C2 > π ⇒ C1 > π;

ii) C1 >> C2 >> C3 ⇒ C1 >> C3.

Strong predictability also obeys the following result which is analogous to both Thm.’s 2 and
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3:

Theorem 6: Consider any pair of (not necessarily distinguishable) physical computers {Ci: i = 1,

2}. It is not possible that both C1 >> C2 and C1 << C2.

Many of the conditions in the preceding results can be weakened and the associated conclu-

sions still hold (e.g., we can weaken the restriction that intelligibility functions have image space

⊆ B.) These weakened version are usually more obscure though, which is why they are not pre-

sented here.

A TM T1 can emulate a TM T2 if for any input for T2, T1 produces the same output as T2

when given an appropriately modified version of that input. (Typically, the “modification”

involves pre-pending an encoding of T2 to that input.) The analogous concept for a physical com-

puter is strong predictability; one physical computer can “emulate” another (not distinguishable,

in general) computer if it can strongly predict that other one. Intuitively, the two components of

T1’s emulating T2, involving T2’s input and its computational behavior, respectively, correspond

to the two components of the requirement concerning IN1 values that occur in the definition of

strong predictability. The requirement that the IN1 value forces the answer of OUT1 to equal that

of any intelligibility function for C2 is analogous to encoding (the computational behavior of) the

TM T2 in a string provided to the emulating TM, T1. Requiring as well that the value IN1 ensures

that IN2( ^u ) = IN2 is analogous to also including an “appropriately modified” version of T2’s

input in the string provided to T1. (Note that any mapping taking IN2 ∈ {IN2} to an IN1 that in

turn induces that starting IN2 is invertible, by construction.) This motivates the following defini-

tion of the analogue of a universal TM:

Definition 9: A universal physical computer for a set of physical computers is a member of that

set that can strongly predict all other members of that set.
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Note that rather than reproduce the output of a computer it is strongly predicting, a universal

physical computer produces the value of an intelligibility function applied to that output. This

allows the computers in our set to have different output spaces from the universal physical com-

puter. However it contrasts with the situation with conventional TM’s, being a generalization of

such TM’s.

v)  Prediction complexity

In computer science theory, given a universal TM T, the algorithmic complexity of an output

string s is defined as the length of the smallest input string s' that when input to T produces s as

output. To construct our physical computation analogue of this, we need to define the “length” of

an input region of a physical computer. To do this, given any computer C and partition π of
^
U,

define a (weak) prediction input set as a minimal subset of IN values needed for C to weakly

induce all intelligibility functions of π.

Intuitively, the prediction set of C for π / C' is a minimal subset of {IN} that is needed by C for

π / C' to be predictable to C. In the case of strong prediction, we provide the associated definition

the extra flexibility of being able to restrict what intelligibility functions are being considered.

Next, to define the physical computation analogue of the length of a string, given a computer

C define the length of a subset of in ⊆ IN as the negative logarithm of the volume of all ^u ∈ ^U

such that IN( ^u ) ∈ in. We write this as l(in). Then the prediction complexity of some partition π

is the minimal such length over the set C-1(π). We write that complexity as c(π | C). Note that the

prediction complexity is defined in terms of weak predictability rather than strong; strong predict-

ability arises in our bounds on it.

We are primarily interested in prediction complexities of binary partitions, in particular of the

binary partitions induced by the separate single elements of multi-element partitions. (The binary

partition induced by some particular element p ∈ π ' is just the binary-valued function of ^u of

whether or not π'( ^u ) = p.) To see what our definitions mean for such a partition, say you are

given some set σ ⊂ ^U (i.e., you are given a binary partition of ^U). Suppose further that you wish



33

to know whether the universe is in σ, and you have some computer C to use to answer (all four

intelligibility functions of) this question. Then loosely speaking, the prediction complexity of σ

with respect to C is the minimal amount of Shannon information that must be imposed in C’s

inputs in order to be assured that C’s output correctly answers that question. In particular, if σ cor-

responds to a potential future state of some system S external to C, then c(σ | C) is a measure of

how difficult it is for C to predict that future state of S.2 Loosely speaking, the more sensitively

that future state depends on current conditions, the more complex it is

In many situations it will be most natural to choose the measure implicitly defining l(.) to be

uniform over accessible phase space volume, so that the complexity of in is the negative physical

entropy of constraining ^u to lie in in. But that need not be the case. For example, we can instead

define the measure so that the volume of each element of the associated {IN} is some arbitrary

positive real number. In this case, the lengths of the elements of {IN} provides us with an arbi-

trary ordering over those elements.

The following example illustrates the connection between lengths of regions in and lengths of

strings in TM’s:

Example 3: In a conventional computer (see Ex. 1 above), we can define a “partial string” s

(sometimes called a “file”) taking up the beginning of an input section as the set of all “complete

strings” taking up the entire input section whose beginning is s. We can then identify the input to

the computer as such a partial string in its input section. (Typically, there would be a special fixed-

size “length of partial string” region even earlier, at the very beginning of the input section, telling

the computer how much of the complete string to read to get that partial string.) If we append cer-

tain bits to s to get a new longer input partial string, s', the set of complete strings consistent with

s' is a proper subset of the set of complete strings consistent with s. Assuming our volume mea-

sure dµ is independent of the contents of the “length of partial string” region, this means that l(s')

≥ l(s).

This is in accord with the usual definition of the length of a string used in Turing machine theory.
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Indeed, if s' contains n more bits than does s, then there are 2n times as many complete strings

consistent with s as there are consistent with s'. Accordingly, if we take logarithms to have base 2,

l(s') = l(s) + n.

Say we want our computer to be able to predict whether ^u lies in some set σ. (To maintain the

analogy with Turing machines, σ could delineate an “output partial string”. This could be done for

example by delineating a particular value of a prediction, perhaps even one in some other com-

puter.) In the usual way, this corresponds to having the binary partition { ^u ∈ σ , ^u ∉ σ } be weakly

predictable to our computer. So the prediction complexity of that prediction is the length of the

shortest region of our input space that will weakly induce that prediction. (Note that since we

require that all four intelligibility functions of σ be induced, more than one input “partial string”

is required for that induction, in general.)

Next, given C together with some other computer C', we need to define a strong prediction

input set of C for the triple of (C', a subset in' of the input values of C', and a subset f ' of the intel-

ligibility functions for C'). This is a minimal subset of C’s input values needed to strongly induce

every pair (f' ∈ f ', IN' ∈ in'). We will write C-1(π) for the set of all prediction input sets of C for π,

and C-1(C', in', f ') for the set of all strong prediction input sets of C for (C', in', f ').

The fact that OUTp values (cf. the definition of prediction partition in the appendix) specify

the set A(OUTq) makes working with Def.’s 10 and 11 a bit messy. In particular, to relate predic-

tion complexity to properties of the associated universal physical computer we must use a set of

“identity” intelligibility functions defined as follows:

Definition 12 (i): Given a space X ⊆ B and a physical computer C = (IN, OUT),

{IC
X} is the set of all question-independent intelligibility functions of C where A(IC

X) = X,

and where ∀ û such that A(OUTq( û )) = X, IC
X( û ) = OUTα( û ).

We also will need the following definition:
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Definition 12 (ii): Given a space X ⊆ B and a physical computer C = (IN, OUT),

when X is a set “C-1(X)” is also a set, defined as those IN ∈ { IN} such that IN( û ) = IN ⇒

A(OUTq( û )) = X.

So for example, if X = B, a pair (IN2 ∈ [C2]-1(X), I2
X ∈ {I2

X}) is an input to C2 and an intelligi-

bility function of C2’s output, respectively. That input IN2 induces an associated output question,

q2 ∈ OUT2
q, that takes on (both) B values as one varies over the ^u input to it. Similarly, the intel-

ligibility function IN2
X takes on (both) B values as one varies over the inputs to it.

Using these definitions, we now bound how much more complex a partition can appear to C1

than to C2 if C1 can strongly predict C2. Though somewhat forbidding in appearance, intuitively,

the bound simply reflects the complexity cost of “encoding” C2 in C1’s input.

Theorem 7: Given any partition π and physical computers C1 and C2 where C1 >> C2 > π,

i) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]  -  ln[3]  +

max {X⊆ B, IN2∈[ C2]-1(X), I2X∈ {I2X}} l[ (C1)
-1

(C2, IN2, I2
X) ]    -

min {X⊆ B, IN2∈[ C2]-1(X)} l[ IN2 ] ,

or alternatively,

ii) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]    +

min {X⊆ B, IN2∈[ C2]-1(X),  I2X∈ {I2X}} l[ (C1)
-1

(C2, IN2, I2
X) ]   -

min {X⊆ B, IN2∈[ C2]-1(X)} l[ IN2 ]  .

As one varies π, in both bounds in Thm. 7 the dependence of the bound on C1 and C2 does not

change. In addition, those bounds are independent of πfor all πsharing the same cardinality. So in

particular they are independent of the precise choice of partition π so long as it is a binary parti-
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tion like those discussed in Ex. 3. In addition, intuitively speaking, the term l[ (C1)
-1

(C2, IN2, I2
X)

] occurring in both bounds is related to the cost of emulating the one computer on the other. This

illustrates how Thm. 7 is the physical computation analogue of the result in Turing machine the-

ory that the difference in algorithmic complexity of a fixed string with respect to two separate Tur-

ing machines is bounded by the complexity of “emulating” the one Turing machine on the other,

independent of the fixed string in question.

Consider the possibility that for the laws of physics in our universe, there exist partitions IN(.)

and OUT(.) that constitute a universal physical computer C* for all other physical computers that

exist in our universe. Then by Thm. 6, no other computer is similarly universal. Therefore there

exists a unique prediction complexity measure that is applicable to all physical computers in our

universe, namely complexity with respect to C*. (This contrasts with the case of algorithmic infor-

mation complexity, where there is an arbitrariness in the choice of the universal TM used.) If

instead there is no universal physical computer in our universe, then every physical computer C

must fail at least once at (strongly) predicting some other physical computer. (Note that unlike the

case with weak predictability considered in Thm. 2, here we aren’t requiring that the universe be

capable of having two distinguishable versions of C.) This establishes the following:

Theorem 8: Either there cannot be computer that strongly predicts all others that exist in our uni-

verse, or there is a unique complexity measure in our universe.

Similar conclusions hold if one restricts attention to a set of (physically localized) conventional

physical computers (cf. Ex. 1), where the light cones in the set are arranged to allow the requisite

information to reach the putative universal physical computer. See also the discussion of realities

below.

4. DISCUSSION
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i) In what sense might reality “be” a computer?

None of the analysis in this paper requires that the possible states of the universe all be charac-

terizable by a single set of very regular patterns encapsulated in some concise “physical laws”.

The results still hold if each ^u ∈ ^
U is just an arbitrary temporally-indexed collection of events,

with little to no discernible regularity relating those events. Broadening the interpretation further,

whereas in a deterministic universe u(t) uniquely sets all u(t' ≠ t), nothing in our analysis relies on

having that or any other kind of structure apply to each ^u. Determinism itself is not needed. In

fact,
^
U can be any kind of set whatsoever, even one whose individual elements cannot reasonably

be viewed as “collections of events” (regular or otherwise), and our results still hold.

As mentioned in the introduction, several authors have speculated that the universe and its

physical laws in some sense are a computer. In light of the breadth of the possible
^
U, it is interest-

ing to consider this issue when “computation” is interpreted to mean a particular physical com-

puter. Under this interpretation, any worldline of the universe specifies a particular OUT value,

and thereby constitutes the calculation of an answer to an associated (perhaps high-dimensional)

question. That output is induced by an input premise that is also embodied in the worldline. Intu-

itively speaking, the input specifies the boundary conditions under which the answer to the ques-

tion is calculated. It also specifies the very question being answered. In particular, for major

enough changes to the input, in general there has to be a change in that question being answered

by the universe. (Intuitively, the original question is no longer meaningful given a large enough

change to
^
u.)

Under this scheme the mapping from arbitrary inputs to the associated question / answer pairs

— the computer C — constitutes the laws of the universe. So we do not need elaborate consider-

ations of grammars, formulations of logic, the foundations of mathematical reasoning etc. to

express those laws. Indeed, since we express the laws via a structure itself defined in terms of
^
U

(namely C), the states
^
U and the laws governing them form a self-contained unit.

Formally, we say that a pair (
^
U, C ) is a reality. One reality is a copy of another if their com-

puters are copies of each other. If two realities are copies, then their law-providing computers

have identical relationships between their inputs, the questions they associate with those inputs,
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and the answers they provide to those questions. Accordingly, it seems reasonable to identify “a

universe and its laws” with equivalence classes of copies of realities.

Say we are given a reality (
^
U, C ). We can calculate for what sets {Ci} of (perhaps non-distin-

guishable) computers the joint output partition OUT1×2×... is predictable to C. Label that set of

sets χ. For any ^u, C’s answer is the value of (an associated intelligibility function of) the outputs

of those {Ci} ∈ χ taken all at once. Next, given some ^u ∈ ^
U, there is some subset χ( ^u ) ⊆ χ of

{Ci} that are weakly induced by C’s associated input, IN( ^u ). These, intuitively, are the {Ci} that

are both predictable to C and are actually predicted by C for the ^u at hand. In a certain sense, if C

is the “laws” of the reality, then having OUT1×2×... be predictable to C is a minimal condition for

saying that the computers in {Ci} are “allowed by” or “consistent with” (
^
U, C ). Having IN( ^u )

induce that {Ci} for the ^u at hand is then a minimal condition for saying that the {Ci} are “real”,

and “exist” in that ^u (cf. Thm. 8). (It is interesting to speculate on the similarity between having

multiple sets {Ci} ∈ χ ( ^u ) and the many worlds interpretation of quantum mechanics.)

Note that whether some {Ci} “exists” is a function of whether C can correctly predict it for ^u

other than the single one at hand in some particular instantiation of a reality. This reliance on

counter-factual ^u to ascribe existence to a {Ci} reflects the fact that a single ^u, by itself, contains

no information. Even if ^u is a collection of high-dimensional real numbers (e.g., a collection of

phase space positions), it has no meaning except in comparison to other such collections.

It may be appropriate to add other conditions to the definition of whether {Ci} “exists”. An

example would be to incorporate the notion of C strongly inducing intelligibility functions of the

{Ci}. Among other things, this would allow us to define the complexity, to the computer constitut-

ing the very laws of the universe, of answering a particular question. But at a minimum, it seems

reasonable to say that any physical computer over
^
U that is not a member of such a set {Ci} is not

“real”.

Whether or not one adds such conditions, one can adopt the associated interpretation of what

it means to say that a particular {Ci} “exists” even when the elements of {Ci} are close copies of

one another. In particular, one can do so when the elements of {Ci} are the entire sequence of pre-

dictions/observations that constitute the mind of some particular scientist. Doing so, we see that a

reality induces a set of scientists, each given by a different {Ci}.
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Adopting a different (“internal”) perspective, the human endeavour comprising the field of

physics constitutes a computer, with its input and output partitions delineated by states of the

mind(s) of one or more physicists. The goal of the field is to have the computer comprised of

those two partitions be computationally equivalent to that of the embedding reality. The analysis

of this paper provides results concerning the possible relationships between the field of physics

and those laws governing our embedding reality. For example, by Thm. 2, if we presume that the

minds of physicists are predictable to the laws of the universe, then those laws are not predictable

to physicists.

In addition to results concerning human endeavours, the analysis of this paper also provides

results concerning sets of mathematical laws governing universes. For example, for finite o(
^
U ),

it is often reasonable to have one IN value for each ^u, and similarly one OUT value for each ^u

(that is the maximum number of both IN’s and OUT’s). Since there are 2o( Û ) binary-valued

questions concerning ^U, this means the (usually vast) majority of questions are not in {OUTq}.

The “laws of the universe” cannot pose most questions concerning that universe (cf. Thm. 1).

Furthermore, by Thm. 3, we know that there are questions q (potentially not in OUTq) for which

there is no IN value that can ensure that C’s answer correctly gives q( ^u ). There are questions

concerning the universe that we can never force the laws of physics to answer correctly.

One possible objection to this entire approach is that the partitions IN and OUT can be viewed

as simply arbitrary “interpretations” of ^u, with no further physical significance. Any other inter-

pretation is just as legitimate. When a workstation provides ^u and its user constitutes the com-

puter C under consideration, this arbitrariness isn’t a problem. It is reasonable to say that the user

of the workstation provides the interpretation of ^u; it is (s)he who deems what the inputs and out-

puts to that workstation “mean”. A different user of the exact same workstation undergoing the

exact same dynamics is free to interpret that workstations’s inputs nd outputs differently, and

thereby constitute a different computer C. One might want more though if rather than a worksta-

tion embedded in a universe and accompanied by an interpreting user in that universe, the com-

puter under consideration is supposed to be the very laws of that universe themselves. This issue

can be especially nettlesome when we want to view those laws as unique somehow, independent

of any interpreting “user”.
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One response to this objection is to simply say that a reality’s laws are not embodied in ^u, but

rather in C. C applied to a particular ^u is merely an instantiation of those laws. An alternative

response is to try to imbue a computer with “physical meaning” by considering the relationship

between the question / answer pairs in C and the associated elements in
^
U. To that end, we say

that (
^
U, C ) is computationally equivalent to a different reality (

^
U', C' ) if two conditions hold.

First, the two realities must be copies of each other, so that their computers share the same set-val-

ued function from inputs IN to outputs (OUTq, OUTα). Second, the two computers share the same

set-valued function from inputs to the reality’s response to the associated question, i.e., from the

value of IN(
^
u ) to the value of α = [OUTq( ^u )]( ^u ).3

A related alternative is to consider realities that do not contradict themselves, i.e., whose com-

puters are infallible (see the discussion in the appendix just before Coroll. 1). If two realities are

both infallible, then they are copies of each other if and only if they are computationally equiva-

lent. So under infallibility, the issue of computational equivalence between realities is reduced to

the original issue of whether the realities are copies. In addition, if C is stable, the issue of

whether C weakly predicts some C' reduces to whether C' is intelligible to C. Note also that for the

computers in infallible realities, we can simplify the definition of OUT to be just a mapping

from ^u to questions (the associated answers being set automatically). For all these reasons, it

seems reasonable to concentrate on infallible realities, and thereby surmount any qualms about

whether C is “just an interpretation” of
^
U .

ii) Relation of Thm. 2 to previous work

Any results concerning physical computation should, at a minimum, apply to the computer

lying on a scientist’s desk. However that computer is governed by the mathematics of determinis-

tic finite automata, not that of Turing machines. In particular, the impossibility results concerning

Turing machines rely on infinite structures that do not exist in any computer on a scientist’s desk.

On the other hand, when one carefully analyzes actual computers that perform calculations

concerning the physical world, one uncovers a mathematical structure governing those computers

that is replete with its own impossibility results. While much of that structure parallels Turing

machine theory, much of it has no direct analogue in that theory. For example, it has no need for
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structures like tapes, moveable heads, internal states, read/write capabilities, and the like, none of

which have any obvious relation to the laws of quantum mechanics and general relativity.

Nonetheless, there are a number of previous results in the literature that can be viewed as Tur-

ing machine analogues of Thm. 2. Many authors have shown how to construct Turing Machines

out of physical systems (see for example [11, 25] and references therein). By the usual uncomput-

ability results, there are properties of such systems that cannot be calculated on a physical Turing

machine within a fixed allotment of time (assuming each step in the calculation takes a fixed non-

infinitesimal time). In addition, there have been a number of results explicitly showing how to

construct physical systems whose future state is non-computable, without going through the inter-

mediate step of establishing computational universality [14, 26].

There are several important respects in which the results of this paper extend this previous

work. All of these previous results rely on infinities of some sort in physically unrealizable sys-

tems (e.g., in [26] an infinite number of steps are needed to construct the physical system whose

future state is not computable). In addition, they all assume one’s computing device is no more

powerful than a Turing machine. Also none of them are motivated by scenarios where the compu-

tation is supposed to be a prediction of the future. Nor are they extendable to allow arbitrary cou-

pling between the computer and the external universe, as (for example) in the processes of

observation and control. There are other limitations that apply to many of these previous results

individually, while not applying to each and every one of them. For example, in [26] it is crucial

that we are computing an infinite precision real number rather than a “finite precision” quantity

like an integer. As another example, many of these previous results explicitly require chaotic

dynamics (e.g., [8]). None of these limitations apply to the result of this paper.

iii) Future work

Future work includes investigating the following issues:

i) How are the results modified if one is concerned with probabilities of erroneous prediction

rather than just worst-case analysis of whether there can possibly be erroneous prediction?
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ii) How must the definitions and associated results be modified for analog computers (so that one

is concerned with amounts of error rather than whether there is an error)? Even if one is predicting

the future state of a stochastic system, so long as that prediction is falsifiable the analysis in this

paper applies. (See the discussion just before Ex. 1.) However how should the analysis be changed

if what one is trying to predict is a random variable? Alternatively, what if (as in the classical real

world) ^u has a definite value, but the output of the computer is a probability distribution? (See the

discussion preceding Lemma 1 in the appendix for preliminary thoughts on this latter topic.)

iii) Since by adopting the many-world interpretation we can cast quantum mechanics as purely

deterministic evolution in Hilbert space, the presumption of determinism in this paper does not a

priori invalidate its applicability to quantum systems. However it is still worth asking whether

there any modifications to the definitions that would facilitate the analysis for quantum systems,

especially if we adopt the Copenhagen interpretation. If there are such modifications, then how

are the ensuing results different for quantum systems? (As an example of such a modification, one

might want to allow sufficient time between T and τ to not run into difficulties due to the Heisen-

berg uncertainty principle.)

iv) Find the exact point of failure — which according to (1) and (2) must exist — of the intuitive

argument “If the computer is simply a sufficiently large and fast Hamiltonian evolution approxi-

mator, then it can emulate any finite classical non-chaotic system”.

v) As mentioned in the introduction, there is a large body of work showing how to embed TM’s in

physical systems. One topic for future work is following an analogous program in the domain of

physical computation, for example by investigating what physical systems support copies of any

element of various sets of physical computers.
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vi) Exploiting the generality of our definitions, it may be possible to apply the analysis of this

paper to the foundations of mathematics. As an example, view each ^u ∈ ^
U as a “book”. Each

book consists of a collection of mathematical propositions, for example (though not necessarily)

expressed as strings over some fixed alphabet. The precise choice of
^
U can embody any desired

restrictions on the set of possible books. The pair of a question and answer then is a choice of a

subset of books in
^
U. For example, such a pair could be a subset of books all of which contain

propositions that all “make the same claim” (i.e., give the same answer) concerning some formal

mathematical hypothesis (i.e., concerning the question at hand). Next, a choice of an input to a

computer is a restriction of attention to a certain set of books. So as an, it could be a restriction to

a set of books all of which adhere to a certain set of axioms (that set constitute the premise that is

input to the computer). Finally, the output function is a mapping from a book to a question and

answer. For example, ^U may be a priori restricted to books that contain declarations of the sort

“given these axioms, the following is true”. In that case, the output function is a way of choosing

a single such declaration from each book. (By allowing only one question per book, the output

function manages to sidestep the issue of ensuring no contradiction arises between its answers to

various questions for the same underlying book.)

Future work involves formalizing this and then working through the resultant implications of

this paper’s analysis of physical computation for the foundations of mathematics.

vii) What other restrictions are there on the predictability relations within distinguishable sets of

physical computers beyond that they form unions of DAG’s? In other words, which unions of

DAG’s can be manifested as the predictability relations within a distinguishable set? How does

this answer change depending on whether we are considering sets of fully input-distinguishable

computers or sets of pairwise-distinguishable computers? For what computers are there finite /

countably infinite / uncountably infinite numbers of levels below it in the DAG to which it

belongs? Might such levels be gainfully compared to the conventional computer science theory

issue of position in the Chomsky hierarchy?
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viii) One might try to characterize the unpredictability-of-the-future result of Thm. 2 is as the

physical computation analogue of the following issue in Turing machine theory: Can one con-

struct a Turing machine M that can take as input A, an encoding of a Turing machine and its tape,

and for any such A compute what state A’s Turing machine will be in after will be in after n steps,

and perform this computation in fewer than n steps? This characterization suggests investigating

the formal parallels (if any) between the results of these papers and the “speed-up” theorems of

computer science.

ix) More speculatively, the close formal connection between the results of this second paper and

those of computer science theory suggest that it may be possible to find physical analogues of

most of the other results of computer science theory, and thereby construct a full-blown “physical

computer science theory”. In particular, it may be possible to build a hierarchy of physical com-

puting power, in analogy to the Chomsky hierarchy. In this way we could translate computer sci-

ence theory into physics, and thereby render it physically meaningful.

We might be able to do at least some of this even without relying on the DAG relationship

among the physical computers in a particular set. As an example, we could consider a system that

can correctly predict the future state of the universe from any current state of the universe, before

that future state occurs. The behavior of such a system is perfectly well-defined, since the laws of

physics are fully deterministic (for quantum mechanics this statement implicitly presumes that

one views those laws as regarding the evolution of the wave function rather than of observables

determined by non-unitary transformations of that wave function). Nonetheless, by the central

unpredictability result of Thm. 2, we know that such a system lies too high in the hierarchy to

exist in more than one copy in our physical universe.

With such a system identified with an oracle of computer science theory we have the defini-

tion of a “physical” oracle. Can we construct further analogues with computer science theory by

leveraging that definition of a physical oracle? In other words, can we take the relationships
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between (computer science) oracles, Turing machines, and the other members of the (computer

science) Chomsky hierarchy, and use those relationships together with our (physical) oracle and

physical computers to gainfully define other members of a (physical) Chomsky hierarchy?

x) Can we then go further and define physical analogues of concepts like P vs. NP, and the like?

Might the halting probability constant Ω of algorithmic information theory have an analogue in

physical computation theory?

As another example of possible links between conventional computer science theory and that

of physical computers, is there a physical computer analogue of Berry’s paradox? Weakly predict-

ing a partition is the physical computation analogue of “generating a symbol sequence” in algo-

rithmic information complexity. The core of Berry’s paradox is that there are numbers k such that

no Turing machine can generate a sequence having algorithmic information complexity k (with

respect to some pre-specified universal Turing machine U). So for example one closely related

issue in physical computation is to characterize the physical computers C1 and x ∈ ℜ such that ∃

a computer C2 where C1 >> C2 and where ∀ partitions π,C2 weakly predicts whether c(π | C1) >

x (i.e., such that ∃ IN2 ∈ {IN2} such that IN2( ^u ) = IN2 ⇒ OUT2
p( ^u ) = (B, whether c(π | C1) >

x)).

xi) Concerns of computer science theory, and in particular of the theory of Turing machines, have

recently been incorporated into a good deal of work on the foundations of physics (e.g., [36, 37}).

Future work involves replacing physical computers for Turing machines in this work, along with

replacing notions like prediction complexity for notions like algorithmic complexity.

xii) More generally, there have been many candidates proposed for how one should measure “the

complexity” of a physical system, e.g., thermodynamic depth [21], logical depth [4a], and physi-

cal complexity [36, 37]. Future work involves limning the relation between these alternatives and

prediction complexity. Particularly intriguing in this regard is logical depth, which is explicitly
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concerned with “how much mathematical work” is needed to perform a computation, measured in

number of computation steps. Prediction complexity is also concerned with such work, only mea-

sured spatially in terms of how much initialization precision is required to perform the computa-

tion.

xiii) Other future work involves investigating other possible definitions of complexity for physical

computation. Even sticking to analogues of algorithmic information complexity, these might

extend significantly beyond the modifications to the definition of prediction complexity discussed

in the text. For example, one might try to define the analogue of a bit sequence’s “length” in terms

of the number of elements in OUTq, rather than in terms of a volume. As another alternative one

might take the (inverse) complexity of a computational device to be the number of input-distin-

guishable computers that can predict that device (working in some pre-specified input-distin-

guishable set, presumably).

xiv) Yet other future work includes calculating prediction complexity of various systems for some

of the simple physical models of real-world computers (e.g., “billiard ball” computers, DNA com-

puting, etc.) that have been investigated, and investigating the prediction complexity of systems

like crystals and gases.

xv) It may prove fruitful to investigate further the concept of self-consistency discussed above, as

a way address the issue of whether a universe and its laws “is” a computer, and to scrutinize the

implications of the analysis of this paper for that issue.

As an example, there may be close connections between such implications and the fundamen-

tal laws of quantum mechanics. For example, recall that the number of questions that can be posed

to a computer is (far) fewer than the total number of intelligibility functions concerning partitions

across ^U (cf. Thm. 1). This forces a coarse-graining on that set of questions, with the mapping

from ^u → OUT( ^u ) providing the choice of what associated universe-wide “observation” to per-
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form, with the coarse-graining of a particular question OUTq is akin to the uncertainty principle.

(Note that this physical computation “uncertainty principle” is different from the Thm. 2-based

one discussed in the text.) See (i) and (ii) above, as well as the discussion of observation at the end

of Section 2.

In addition, there are at least several ways that the formal definition of a reality can be modi-

fied. For example, one could consider realities that consist of sets of multiple computers together

with an underlying universe, rather than just a single such computer. This would bring all the mul-

tiple computer unpredictability results (e.g., Thm. 2) directly into play within the fundamental

laws of physics themselves. Exploring such topics is the subject of future work.

xvi) Originally we restricted attention to intelligibility functions that are question-independent

because otherwise no pair of computers could be mutually intelligible (Thm. 1). However it

turned out that even with this restriction, no pair of computers can be mutually predictable (Thm.

2). Accordingly, in Sections 3 and 4 attention shifted to god computers, which can correctly pre-

dict any computer outside of themselves, but are not themselves predictable to such computers.

Given this shift though, Thm. 1 now does not provide a reason to require that our intelligibility

functions be question-independent. Future work involves re-analyzing the issues addressed in

Sections 3 and 4 for full question-dependent intelligibility functions. Other future work involves

re-analyzing those issues for changes in which of the conditions (i), (ii) and/or (iii) discussed in

the appendix are used to define weak and/or strong predictability.

FOOTNOTES

[1] To “remember”, in the present, an event from the past, formally means “predicting” that event

accurately (i.e., retrodicting the event), using only information from the present. Such retrodiction

relies crucially on the second law. Hence, the temporal asymmetry of the second law causes the
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temporal asymmetry of memory (we remember the past, not the future). That asymmetry of mem-

ory in turn causes the temporal asymmetry of the psychological arrow of time. “Memory systems

theory” refers to the associated physics of retrodiction; it is the thermodynamic analysis of sys-

tems for transferring information from the past to the present. See [31].

[2] Especially for non-binary π, many other definitions of prediction complexity besides Def.

11(ii) can be motivated. For example, one could reasonably define the complexity of π to be the

sum of the complexities of each binary partition induced by an element of π, i.e., one could define

it as Σp∈π c({ ^u ∈ p, ^u ∉ p} | C). Another variant, one that would differ from the one considered

in the text even for binary partitions, is minρ∈ C-1(π) [ΣIN∈ρ l(IN)]. For reasons of space, no such

alternatives will be considered in this paper.

[3] Note that there is a lot of structure not captured in this definition. As an example, two realities

can be computationally equivalent even if they differ in their functions mapping IN(
^
u ) →

[OUTq(
^
u )](IN-1(IN1)), where IN1 is the first element of {IN} (so that for neither computer does

IN-1(IN1) vary as the
^
u argument to [OUTq(.)] is varied). Such a difference between the two real-

ities is akin to a difference in their responses to counter-factual questions.

APPENDIX: FORMAL DEFINITIONS AND PROOFS

This appendix presents the fully formal definitions and proofs of the results discussed in the

text. We start with the following definition:

Definition 1:

i) A (computation) partition is a pair, consisting of a non-empty set of partition-element labels

and a single-valued mapping from
^
U into that set. Unless stated otherwise, the mapping is
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assumed to be surjective onto the set.

ii) Any question q ∈ Q is a partition, whose set of partition-element labels is A, with elements α

∈ A called answers to that question. A(q) indicates the A-component of the pair q. We restrict

attention to Q such ∃  at least two elements in A(q) for at least one q ∈  Q.

Note that we make no assumptions concerning the finiteness of Q and/or any of the {A(q ∈ Q}.

Unless indicated otherwise (e.g., in the definition of a question), any partition is assumed to con-

tain at least two elements. Note that the definition of a computer partition differs from that of a

conventional set-theoretic partition in its inclusion of the partition-element labels.

Given these definitions, we can now define physical computers:

Definition 2: i) In an output partition, OUT, the space of partition element labels is a space of

possible “outputs”, {OUT}, consisting of all pairs {OUTq ∈ Q, OUTα ∈ A(OUTq)}, for some Q

and associated A(.) as defined in Def. (1). Often, for convenience, we will write an output parti-

tion OUT explicitly in the form (Q, OUT(.)), where OUT(.) is the output map û ∈ ^
U → {OUTq ∈

Q, OUTα ∈ A(OUTq)}. Also, we will find it useful to define an associated (prediction) partition,

OUTp(.) : û → (A(OUTq( û ), OUTα( û )).

ii) In an input partition, IN, the space of partition element labels is a space of possible “inputs”,

{IN} ≡ A(IN).

iii)  A (physical) computer consists of the double of an input partition and an output partition

Since we are restricting attention to non-empty Q (cf. Def. 1), {OUT} ≡ A(OUT) is non-

empty. The surjectivity usually assumed of IN(.) and OUT(.) (cf. Def. 1) is a restriction on {IN}

and {OUT}, respectively. In the case of OUT it reflects the fact that we want the computer to be

able to provide any of the allowed answers to any question it can pose. (This property is perhaps

the most important reason why we don’t define the output of a computer simply to be a region

of
^
U, but rather to be a question-answer pair that delineates such a region.) More generally, for
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both inputs and outputs, for reasons of convenience we don’t want to allow a value “officially” to

be in the space of the computer’s potential inputs (outputs) if there is no state of the computer that

corresponds to that input (output). For example, if the computer is a digital workstation with a

kilobyte of its RAM set aside as input, it makes no sense to have the input space contain more

than (28)1024 values, the number of possible bit patterns in that RAM. For an example of when

OUT(.) need not be surjective, see Def. 7 below.

We can now define a “copy” of a physical computer:

Definition 2 (iv): Given a computer C ≡ {IN, Q, OUT(.)}, define the implication in {OUT} of

any value IN ∈ {IN} to be the set of all OUT ∈ {OUT} consistent with IN, in that ∃ ^u ∈ ^U for

which both IN( ^u ) = IN and OUT( ^u ) = OUT.

v) The computer C2 ≡ {IN2, Q2, OUT2(.)} is a copy of the computer C1 ≡ {IN1, Q1, OUT1(.)} iff

Q2 = Q1, {IN2} = {IN1} ≡ {IN}, and the implication in {OUT2} of any IN ∈ {IN} is the same as

the implication in {OUT1} of that IN.

As an example, any computer is a copy of itself. More generally, if V is a bijection over
^
U, then

{IN(V(.)), Q(V), OUT(V(.))} is a copy of {IN(.), Q, OUT(.)}, where Q(V) ≡ {q(V(.)) : q ∈ Q}.

Note that Q2 = Q1 means that {OUT2} = {OUT1}. An obvious generalization of Def. 2(v) is to

only require that there be a re-ordering of the individual q2 ∈ Q2 and/or a bijective transformation

of some of the A(q2 ∈ Q2) such Q2 = Q1.

Note that IN1(.) may differ from IN2(.) and that OUT1(.) may differ from OUT2(.) in the defi-

nition of a copy of a computer; the two computers are allowed to have different input values for

the same ^u, and they are allowed to have different output values for the same ^u. (If this weren’t

the case, the two computers would be identical.) Similarly, they can have different û for the same

output values (and/or input value). Accordingly, a particular partition can be weakly predictable to

a computer C but not to a copy of C. (For example, this can occur when that partition is related to

the output section of C’s copy.)
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It is possible to generalize Def. 2(v) so that C1 and C2 do not concern the same
^
U. The only

place in our definition that the sharing of
^
U arises is in the requirement that Q2 = Q1. To circum-

vent that requirement, given any countable set of partitions {πi}, define Π({πi}) as the union over

all
^
u of the strings (π1( ^u ), π2( ^u ), ...). (Since {πi}is countable, so is Π({πi}).) This union is how

the partitions collectively divide up
^
U. Then if we replace the requirement that Q2 = Q1 with the

requirement that Π(Q2) = Π(Q1), we arrive at our desired generalization.

If there is additional structure in the two
^
U at hand, one can refine this generalization of the

definition of a copy. For example, if both
^
U are topological spaces that are homeomorphically

related, one can require that the transformation implicit in establishing that Π(Q1) = Π(Q2)

respects that homeomorphism.

Definition 3: Consider a physical computer C ≡ (Q, IN(.), OUT(.)) and a ^U-partition π. A (not

necessarily surjective) partition mapping
^
U into B, f, is an intelligibility function (for π) if

∀ û, û' ∈ ^
U, π( û ) = π( û' ) ⇒ f( û ) = f( û' ).

A set F of such intelligibility functions is an intelligibility set for π.

We view any intelligibility function as a question by defining A(f) to be the image of ^U under

f. If F is an intelligibility set for πand F ⊆ Q, we say that π is intelligible to C with respect to F. If

the intelligibility set is not specified, it is implicitly understood to be the set of all intelligibility

functions for π.

We say that two physical computers C1 and C2 are mutually intelligible (with respect to the

pair (F1, F2)) iff both OUT2 is intelligible to C1 with respect to F2 and OUT1 is intelligible to C2

with respect to F1.

Plugging in, π is intelligible to C iff ∀ intelligibility functions f, ∃ q ∈ OUTq such that q = f, i.e.,

such that A(q) = the image of ^U under f, and such that ∀ û ∈ ^
U, q( û ) = f( û ). Formally, by the

surjectivity of OUT(.), demanding intelligibility implies that ∃ ^u' ∈ ^
U such that ∀ ^u ∈ ^

U,

[OUTq( ^u' )]( ^u ) = f( ^u ). Note that since πcontains at least two elements, if π is intelligible to C,
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∃ OUTq ∈ {OUTq} such that A(OUTq) = B, an OUTq such that A(OUTq) = {0}, and one such

that A(OUTq) = {1}. Usually we are interested in the case where π is an output partition of a

physical computer, as in mutual intelligibility.

In conventional computation as in Ex. 1, IN(.) specifies the question q ∈ Q we want to pose to

the computer. In such scenarios, mutual intelligibility restricts how much computation can be

“hidden” in OUT2(.) and IN1(.) (OUT1(.) and IN2(.), respectively) by coupling them, so that sub-

sets of the range of OUT2(.) are, directly, elements in the range of IN1(.), without any intervening

computational processing.

We are now in a position to formally define what it means for a computer to make a predic-

tion. First consider the following three conditions relating a computer C, a partition π, and an

intelligibility set for π, F:

i) π is intelligible to C with respect to F, i.e., F ⊆ OUTq ;

ii) ∀  f ∈ F, ∃ IN ∈ {IN} that weakly induces f, i.e., an IN such that:

IN(
^
u )  =  IN

⇒

OUTp( û )  =  (A(f), f( û ));

iii) ∀ f ∈ F, if the set of IN values weakly inducing f is non-empty, then there is at least one of

those IN for which it is further true that IN(
^
u ) = IN ⇒ OUTq( ^u ) = f.

Intuitively, condition (ii) means that for all questions q in F, there is an input state such that if C is

initialized to that input state, C’s answer to that question q (as evaluated at τ) must be correct. If

(ii) and (iii) both hold, then we can combine those conditions into the single statement that ∀ f ∈

F ∃ IN ∈ {IN} such that IN(
^
u ) = IN ⇒ OUT( ^u ) = (f, f( ^u )), and (i) is superfluous. Intuitively,

in such a situation, for any question in the intelligibility set, there is always an input that induces

the computer to ask and (correctly) answer that question.

Many of the unpredictability results do not require that all three conditions hold. In particular,

our central result, Thm. 2, relies on neither (i) nor (iii); in its strongest formulation it only invokes
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condition (ii) (as the proof of it presented below makes clear). In contrast, existence proofs are

strongest when we impose as many conditions as possible. This raises the issue of which of those

conditions would most usefully be incorporated into our definition of predictability. As a compro-

mise, here the term “weak predictability” is interpreted to mean only that conditions (i) and (ii)

necessarily hold:

Definition 4: Consider a physical computer C, partition π, and intelligibility set for π, F. We say

that π is weakly predictable to C with respect to F iff F ⊆ OUTq, and ∀ f ∈ F, ∃ IN ∈ {IN} that

weakly induces f.

As a formal matter, note that in the definition of predictable, even though f(.) is surjective onto

A(f) (cf. Def. 3), it may be that for some IN, the set of values f( ^u ) takes on when ^u is restricted

so that IN( ^u ) = IN do not cover all of A(f). The reader should also bear in mind that by surjectiv-

ity, ∀ IN ∈ {IN}, ∃ û ∈ ^U such that IN( û ) = IN.

We next define the property that two computers’ input functions are independent:

Definition 5: Consider a set of n physical computers {Ci ≡ (Qi, INi(.), OUTi(.)) : i = 1, ..., n}. We

say {Ci} is (input) distinguishable iff ∀ n-tuples (IN1 ∈ {IN1}, ..., INn ∈ {INn}), ∃ û ∈ ^
U such

that ∀  i, INi( û ) = INi simultaneously.

We say that {Ci} is pairwise (input) distinguishable if any pair of computers from {Ci} is distin-

guishable, and will sometimes say that any two such computers C1 and C2 “are distinguishable

from each other”. We will also say that {Ci} is a maximal (pairwise) distinguishable set if there

are no physical computers C ∉  {Ci} such that C ∪  {Ci} is a (pairwise) distinguishable set.

Our first result does not even concern the accuracy of prediction. It simply states that for any

pair of physical computers there are always binary-valued questions about the state of the uni-

verse that cannot even be posed to at least one of those physical computers. In particular, this is
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true if the second computer is a copy of the first one, or even if it is the same as the first one. (The

result does not rely on input-distinguishability of the two computers — a property that obviously

does not describe the relationship between a computer and itself.) This impossibility holds no

matter what the cardinality of the set of questions that can be posed to the computers (i.e., no mat-

ter what the cardinality of {IN} and/or Q). It is also true no matter how powerful the computers

(and in particular holds even if the computers are more powerful than a Turing Machine), whether

the computers are analog or digital, whether the universe is classical or quantum-mechanical,

whether or not the computers are quantum computers, and even whether the computers are subject

to physical constraints like the speed of light. In addition the result does not rely on chaotic

dynamics in any manner. All that is required is that the universe contain two (perhaps identical,

perhaps wildly different) physical computers.

Theorem 1: Consider any pair of physical computers {Ci : i = 1, 2}. Either ∃ finite intelligibility

set F2 for C2 such that C2 is not intelligible to C1 with respect to F2, and/or ∃ finite intelligibility

set F1 for C1 such that C1 is not intelligible to C2 with respect to F1.

Proof: Hypothesize that the theorem is false. Then C1 and C2 are mutually intelligible ∀ finite F1

and F2. Now the set of all finite F2 includes any and all intelligibility functions for C2, i.e., any

and all functions taking ^u to a bit whose value is set by the value OUT2( ^u ). The set of those

functions can be bijectively mapped to the power set 2{OUT2}. So F2 ⊆ Q1 ⇒ o(Q1) ≥ o(2{OUT2}).

However o({OUT2}) ≥ o(Q2), since {OUT2} contains all possible specifications of a q2 ∈ Q2.

Therefore o(Q1) ≥ o(2Q2
). But it is always true that o(2A) > o(A) for any set A, which means in

particular that o(2Q2
) > o(Q2). Accordingly, o(Q1) > o(Q2). Similarly though, o(Q2) > o(Q1).

Therefore o(Q1) > o(Q1), which is impossible. QED.

Note that Thm. 1 doesn’t require that C1 and C2 be different computers.

Ultimately, Thm. 1 holds due to our requiring that our physical computer be capable of
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answering more than question about the future state of the universe. To satisfy this requirement q

cannot be pre-fixed. (In conventional computation, it is specified in the computer’s input.) But

precisely because q is not fixed, for the computer’s output of α to be meaningful it must be

accompanied by specification of q; the computer’s output must be a well-defined region in ^U. It is

this need to specify q as well as α in the output, ultimately, which means that one cannot have two

physical computers both capable of being asked arbitrary questions concerning the output of the

other.

Thm. 1 reflects the fact that while we do not want to have C’s output partition “rigged ahead of

time” in favor of some single question, we also cannot require too much flexibility of our com-

puter. It is necessary to balance these two considerations before analyzing prediction of the future.

We do this with the formal property of question-independence.

Recall that for any f that is an intelligibility function for (the output partition of) some com-

puter C, ∀ û, û' ∈ Û, OUT( û ) = OUT( û' ) implies that f( û ) = f( û' ). So for such an f, the joint

condition [OUTq( û ) = OUTq( û' )] ^ [OUTα( û ) = OUTα( û' )] implies that f( û ) = f( û' ). We

consider f’s that obey weaker conditions:

Definition 6: An intelligibility function f for an output partition OUT(.) is question-independent

iff ∀ û, û' ∈ Û:

OUTp( û )  =  OUTp( û' )

⇒

     f( û ) = f( û' ).

An intelligibility set as a whole is question-independent if all its elements are.

We write C1 > C2 (or equivalently C2 < C1) and say simply that C2 is (weakly) predictable to

C1 (or equivalently that C1 can predict C2) if OUT2
p is weakly predictable to C1 for all question-

independent finite intelligibility sets for C2. Similarly, from now on we will say that C2 is intelli-

gible to C1 without specification of an intelligibility set if OUT2
p is intelligible to C1 with respect

to all question-independent finite intelligibility sets for C2.
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Intuitively, f is question-independent if its value does not vary with q among any set of q all of

which share the same A(q). As an example, say our physical computer is a conventional digital

workstation. Have a certain section of the workstation’s RAM be designated the “output section”

of that workstation. That output section is further divided into a “question subsection” designating

(i.e., “containing”) a q, and an “answer subsection” designating an α. Say that for all q that can be

designated by the question subsection A(q) is a single bit, i.e., we are only interested in binary-

valued questions. Then for a question-independent f, the value of f can only depend on whether

the answer subsection contains a 0 or a 1. It cannot vary with the contents of the question subsec-

tion. In terms of the first of the motivations we introduced for requiring intelligibility, requiring

question-independent intelligibility means we only require each computer’s answer to be readily

intelligible to the other one. We are willing to forego having the question that each computer

thinks it’s answering also be readily intelligible to the other one.

As a formal example of question-independent intelligibility, say our computer has questions q

for which A(q) = B, questions q for which A(q) = {0}, and q for which A(q) = {1}, but no others.

Then there are four distinct subsets of ^U, which mutually cover ^U, defined by the four equations

OUTp( ^u ) = (B, 1), OUTp( ^u ) = (B, 0), OUTp( ^u ) = ({1}, 1), and OUTp( ^u ) = ({0}, 0). (The full

partition OUT(.) is a refinement of this 4-way partition, whereas this 4-way partition need not

have no relation with the partitions making up each q in Q.) So a question-independent intelligi-

bility function of our computer is any B-valued function of which of these four subsets a particu-

lar ^u falls into.

Thm. 1 does not hold if we restrict attention to question-independent intelligibility sets. As an

example, both of our computers could have their output answer subsections be a single bit, and

both could have their Q contain all four Boolean questions about the state of the other computer’s

output answer bit. (Those are the following functions from ^u ∈ Û → B: Is u such that the other

computer’s output bit is 1? 0? 1 and/or 0? Neither 1 nor 0?) So the Q of both computers contains

all possible question-independent intelligibility sets for the other computer.

So Def. 6 allows us to circumvent Thm. 1. As an alternative solution, we could define a ques-
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tion-free computer as a pair of an input partition and an output partition where the variable OUT

only consists of A(OUTq) and α (rather than OUTq, A(OUTq), and α). Working with such com-

puters would have the benefit of simplifying the analysis. Intelligibility in the sense originally

defined, applied to a question-free computer, is exactly equivalent to applying question-indepen-

dent intelligibility to a full (question-dependent) computer. Moreover many of the results of this

paper still hold for question-free computers.

The problem with this alternative approach is that the two partitions IN(.) and OUTp(.), by

themselves, don’t really specify a “computer” in any sense. They don’t specify a means of associ-

ating answers with questions. To address this without introducing OUTq, one might add a map-

ping from questions to inputs to the definition of a computer. However once one does this it is not

clear that this new definition of a computer is any “simpler” than our original one. This approach

is not pursued any further in this paper.

In general, we cannot have the IN value of our computer C always uniquely fix the associated

OUTα (i.e., cannot have the case ∀ IN, ∃ OUTα such that IN(
^
u ) = IN ⇒ OUTα(

^
u ) = OUTα). If

it did, then C could not predict most non-trivial computers that are distinguishable from C. For

example, say that for a computer C2, ∀ OUT2
q ∈ {OUT2

q}, A(OUT2
q) = {IN2}, and that

OUT2
α(

^
u ) = IN2(

^
u ) ∀ ^

u. So C2’s output simply equals its input. Then since whatever the

choice of IN all IN2 values are allowed (by distinguishability), it follows that whatever the choice

of IN, all OUT2
α values are allowed. So appropriate choice of IN cannot make the value of OUTα

track (an intelligibility function of ) OUT2
α if that choice of IN forces a unique value of OUTα.

This is quite reasonable. If C1 is to predict C2 correctly, the information of what C2 is calculat-

ing must somehow be conveyed into C1. Due to input-distinguishability, this can only happen by

C1’s implicitly “observing” what question C2 is answering (rather than by having IN1 reflect IN2).

Accordingly, for a fixed IN1, C1 must be able to generate different predictions, depending on the

results of that “observing”. Hence, IN1 cannot fix the value of OUT1
α. (On the other hand, it is not

so unreasonable to demand that the value of IN1 specify the value of OUT1
q, i.e., demand that it

uniquely fixes what question C1 is answering. See Coroll. 1 below.)
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The following example establishes that there are pairs of input-distinguishable physical com-

puters {C1, C2} in which C2 is predictable to C1, and in which the question component of OUT1 is

uniquely fixed by IN1:

Example 2: Q2 consists of a single question, one which is a binary partition of ^U so that

A(OUT2
q( ^u )) = B always. Since OUT2(.) is surjective, the image of ^U under OUT2

α(.) is all of

B. Q1 has four elements given by the four logical functions of the bit OUT2
α( ^u ). (Note these are

the four intelligibility functions for C2.) Have IN1(.) = OUT1
q(.), so that {IN1} contains four ele-

ments corresponding to those four possible questions concerning OUT2
α. Next, have OUT1

α( ^u )

= [OUT1
q( ^u )]( ^u ) ∀ ^u ∈ ^U. Then for any of the four intelligibility functions for C2, q, ∃ IN1 ∈

{IN1} such that IN1( ^u ) = IN1 ⇒ [A(OUT1
q( û )) = A(q)] ^ [OUT1

α( û ) = q( û )]; simply

choose IN1 = q, so that IN1( ^u ) = IN1 ⇒ OUT1
q( ^u ) = q. Finally, to ensure distinguishability, if

there are multiple IN2 values, have each one occur for at least one ^u in each of the subregions

of ^U given by the partition IN1(.).

Due to question-independence, we do not need to specify OUT2
q(.). If we like, we could set it so

that OUT2
q is uniquely fixed by the value of IN2, just as is the case for C1.

To ensure surjectivity of OUT1(.), we could have IN1(.) subdivide each of the two sets (one set for

each value of OUT2
α) { ^u ∈ ^U : OUT2

α( ^u ) = OUT2
α} into four non-empty subregions, one for

each IN1 value. So (IN1( ^u ), OUT2
α( ^u )) are two-dimensional coordinates of a set of disjoint

regions that form a rectangular array covering
^
U. This means that ^u → (IN1( ^u ), OUT2

α( ^u )) is

surjective onto {IN1} × {OUT2
α}, so that for any OUT1

α and intelligibility function for C2, q,

there is always a value of IN1 that both induces the correct prediction for that function q and is

consistent with that OUT2
α.

The following variant of Ex. 2 establishes that we could have yet another computer C3 that

predicts C2 but that is also distinguishable from C1:
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Example 2': Have Q3 = Q1, {IN3} = {IN1}, OUT3
q(.) = IN3(.), OUT3

α( ^u ) = [OUT3
q( ^u )]( ^u )

∀ ^u ∈ ^U, and have IN3(.) subdivide IN1(.) so that all four values of IN3 can occur with each value

of IN1. In general, as we vary over all ^u ∈ ^U and therefore over all (IN1, IN3) pairs, the pair of

intelligibility function that C1 is predicting will separately vary from those that C3 is predicting, in

such a way that all 24 pairs of intelligibility functions for C2 are answered correctly for some ^u

∈ ^U.

In addition, we can have a computer C4, distinguishable from both C1 and C2, where C4 > C1,

so that C4 > C1 > C2. We can do this either with C4 > C2 or not, as the following variant of Ex. 2

demonstrates:

Example 2": Have OUT4
q(.) = IN4(.), OUT4

α( ^u ) = [OUT4
q( ^u )]( ^u ) ∀ ^u ∈ ^U, and {IN4} =

{OUT4
q} equals the set of all 24 question-independent intelligibility functions for C1. (There are

four possible OUT1
p: {({0}, 0), ({1}, 1), (B, 0), (B, 1)}.) Ensure surjectivity of OUT4(.) by hav-

ing each region of constant OUT4
q( ^u ) overlap each region of constant OUT1

p( ^u ).This estab-

lishes that C4 > C1. Distinguishability would then hold if IN4(.) subdivides IN1(.) so that all 16

values of IN4 can occur with each value of IN1.

In this setup, C2 may or may not be predictable to C4. To see how it may not be, consider the case

where {IN2} is a single element (so distinguishability with C2 is never an issue). Have IN4(.) be a

refinement of OUT2
α(.), in that each IN4 value can only occur with one or the other of the two

OUT2
α values. So each IN4 value delineates a “horizontal strip” of constant OUT2

α( ^u ), running

across all four values of IN1( ^u ). (Since IN1( ^u ) = OUT1
q( ^u ), and OUT1

α( ^u ) =

(OUT1
q( ^u ))( ^u ), OUT1

α( ^u ) = (IN1( ^u ))( ^u ), so specifying the value of IN1( ^u ) specifies

OUT1
p( ^u ), and each strip crosses all four OUT1

p values, as was stipulated above.)

Now choose the strip with A(OUT4
q( ^u )) = A(IN4( ^u )) = {0} to have coordinate OUT2

α( ^u ) = 1,

and the strip with A(OUT4
q( ^u )) = {1} to have coordinate OUT2

α( ^u ) = 0. In the remaining four-

teen strips, OUT4
α( ^u ) is not constant, and therefore is not a single-valued intelligibility function
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of the associated (constant) value of OUT2
p( ^u ). In both of those two strips though, OUT4

α( ^u )

is the opposite of OUT2
α( ^u ). So no IN4 value induces the identity question-independent intelli-

gibility function for C2: ^u → ΟUT2
α( ^u ), i.e., no IN4 induces OUT4

p( ^u ) = (B, OUT2
α( ^u )).

Accordingly, C4 does not predict C2.

In other instances though, both C2 and C1 are predictable to C4. To have this we need only subdi-

vide {IN4} and {OUT4} into two portions, ({IN4}A, {OUT4}A), and ({IN4}B, {OUT4}B), which

divide ^U in two. The first of these portions is used for predictions concerning C2, as in Ex. 2; each

region of constant IN4( ^u ) is a subset of a region of constant IN1( ^u ) overlapping both

OUT2
α( ^u ). The second is used for predictions concerning C1, as just above. It consists of hori-

zontal strips extending over that part of ^U not taken up by the regions with IN4( ^u ) ∈ {IN4}A. So

{IN4}A = {OUT4
q}A contains four elements, and {IN4}B = {OUT4

q}B contains sixteen, which

means that {IN} = {OUT} contains twenty elements, all told. Distinguishability is ensured by

having IN4 take on all its possible values within any subset of ^U over which both IN1(.) and IN2(.)

are constant.

We now present the proof of Thm. 2:

Proof of Thm. 2: Given OUT1(.) and OUT2(.), define the function f2( û ) by:

f2( û ) = 1 if A(OUT1
q( û )) = {0};

f2( û ) = 0 if A(OUT1
q( û )) = {1};

f2( û ) = NOT[OUT1
α( û )] if A(OUT1

q( û )) = B; and

f2( û ) = 0 otherwise.

Intuitively, this function is the negation of OUT1’s answer when OUT1’s question is contained in

B. Now A(f2) ∈ {{0}, {1}, B}, with its precise value depending on OUT1. Since by construction

f2 does not vary with OUT1
q( û ), only with A(OUT1

q( û )), this means that f2 is a question-inde-

pendent intelligibility function for OUT1. Define f1 similarly, just with no negation operation;

f1( û ) = OUT2
α( û ), whenever A(OUT2

q) ⊆ B, and equals 0 otherwise.
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By hypothesis, ∃ IN2 such that IN2( û ) = IN2 ⇒ OUT2
p( û ) = (A(f2), f2( û )). (Note that for

that IN2, A(OUT2
q( û )) ∈ {{0}, {1}, B}.) Similarly for IN1 and f1. So by input distinguishability,

∃ single û such that at the same time, OUT2
α( û ) = f2( û ) and OUT1

α( û ) = f1( û ). Plugging in

and using the fact that both A(OUT2
q( û )) ∈ {{0}, {1}, B} and A(OUT1

q( û )) ∈ {{0}, {1}, B},

we see that OUT1
α( û ) = f1( û ) = OUT2

α( û ) = f2( û ) = NOT[OUT1
α( û )]. This contradiction

establishes our result. QED.

Restating it, Thm. 2 says that either ∃ finite question-independent intelligibility set for C1, F1,

such that C1 is not predictable to C2 with respect to F1, and/or ∃ finite question-independent intel-

ligibility set for C2, F2, such that C2 is not predictable to C1 with respect to F2. We can weaken the

definition of “intelligibility” and still establish the impossibility of having both C1 > C2 and C2 >

C1. For example, that impossibility will still obtain even if neither C1 nor C2 contains B-valued

questions, if they instead contain all possible functions mapping each others’ values of OUTα

onto {0, 1, 2} (or more precisely contain all such functions of OUTp — cf. the definition of pre-

diction partition in the appendix. For pedagogical simplicity, such weakened definitions are not

investigated here.

Note that Thm. 2 still holds if we consider larger intelligibility sets that are supersets of F, the

set of all intelligibility functions of OUTp. In particular, consider modifying the definition of

weak predictability to involve F', the set of all intelligibility functions of the partition
^
u →

(IN(
^
u ), OUTp(

^
u )). Intuitively, this is the set of all (question-independent) intelligibility func-

tions of the entire computer (IN, OUT), not just of its output partition. (So “prediction” now

means, in essence, predicting all aspects of C.) Then since F ⊆ F', Thm. 2 still applies with this

alternative definition of weak predictability.

As mentioned previously, Thm. 2 does not rely on intelligibility. This reflects our restriction to

question-independent intelligibility functions. Such functions cannot “see” what the contents of

some (computer-to-be-predicted’s) OUTq are. Similarly, condition (ii) does not care about the

contents of any (predicting computer’s) OUTq. So the contents of OUTq in either a predicting or
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being-predicted computer are, for the most part, irrelevant. Accordingly, restrictions on those con-

tents have few effects concerning computers predicting each other using question-independent

intelligibility sets.

Nonetheless, Thm. 2 can be used to derive an uncomputability result that does rely on mutu-

ally intelligibility. To see this, define a computer C to be (OUTq) stable if ∀ q ∈ {OUTq}, there is

always an associated input that forces the output question to equal q, i.e., if ∃ IN such that IN(
^
u )

= IN ⇒ OUTq(
^
u ) = q. (Note that given any OUT, stability can always be assured by choosing a

sufficiently fine-grained IN(.).) In addition, define a computer to be infallible if its associated

answers are always correct responses to its associated questions, i.e., if OUTα(
^
u ) = [OUTq(

^
u

)](
^
u ) ∀ ^

u. (As an example, given any partition π, the computer which has a single question given

by q( ^u ) = π(
^
u ) and which has OUTα( ^u ) = π( ^u ) is infallible.) Then we have the following:

Corollary 1: Let C1 and C2 be two distinguishable mutually intelligible computers, both of which

are stable. It is not possible that both C1 and C2 are infallible.

Proof: Let F2 be the set of all questions-independent intelligibility functions for C2. Then F2 ⊆

{OUT1
q}, by mutual intelligibility. By stability of OUT1, this means that ∀ f ∈ F2, ∃ IN ∈ {IN1}

such that IN1(
^
u ) = IN ⇒ OUT1

q(
^
u ) = f. If C1 were infallible, this would then mean that

OUT1
p(

^
u ) = (A(f), f(

^
u )). So IN weakly induces f, and more generally, C1 > C2. Similarly, C2 >

C1. If we now apply Thm. 2 we get the result claimed. QED.

Similarly, one can produce corollaries of the results presented below by, in essence, replacing pre-

dictability with infallibility. For reasons of space, those corollaries are not presented here. Note

that for any stable, infallible computer C, if C' is intelligible to C, then all three conditions (i-iii)

considered for defining weak predictability hold.

As an aside, there are sevearl ways one can generalize the foregoing to the case of stochastic

scenarios. One starts by defining a probabilistic partitions R as a space of partition labels A(R)



63

and an associated distribution PR(r ∈ A(R) | ^u ). (The situation considered heretofore is the spe-

cial case where all partitions are delta functions.) In particular, an output probabilistic partition

OUT is one where A(OUT) is the set of all pairs {q ∈ {OUTq}, α ∈ A(q)} for some set of proba-

bilistic partitions {OUTq}. An example is a workstation whose output answer α is the specifica-

tion of one of a set of candidate Gaussian distributions concerning the external world, i.e., a

Gaussian P( ^u | α). Given also a prior distribution P(α), we can express that workstation’s output

as a probabilistic question P(α | ^u) together with a particular associated answer. Another example

is where ^u is a wavefunction, and a probabilistic partition gives the results of a Hermitian operator

applied to that wavefunction.

For simplicity assume that the full joint distribution over ^U and all partition labels is specified,

and that P( ^u ) is nowhere-zero over its domain of definition. Now any actual physical computer’s

state is specified in ^u for a classical universe, and the same is true in the quantum case assuming ^u

is an eigenstate of the operator of a human observing the computer’s output. Accordingly, the

input and output probabilistic partitions of a probabilistic computer (i.e., P(IN ∈ {IN} | ^u) and

P(OUT ∈ {OUT} | ^u), respectively) are delta functions, although the partition OUTq is not one in

general. Two probabilistic computers C1 and C2 are (input) probabilistic distinguishable if ∀

IN1 ∈ {IN1} and IN2 ∈ {IN2}, ∃ ^u such that P( ^u ) ≠ 0, P(IN1 | ^u) ≠ 0, and P(IN2 | ^u) ≠ 0.

As before, an intelligibility function is a “translation” mapping a partition’s possible outputs

into B. Formally, a probabilistic intelligibility function Φ of a (probabilistic) partition R with

labels r is a probabilistic partition having A(Φ) ⊆ B where ∃ a single-valued function h: R → B

such that P(φ ∈ A(Φ) | ^u) = ∫d ^u δ(φ, h(r)) P(r | ^u). (A question-independent probabilistic intelli-

gibility function of an output partition OUT simply has h(OUT) depend only on OUTp.) We

define the degree of weak predictability of a probabilistic partition R to a probabilistic computer

C for an intelligibility set F as

εR:C minΦ F∈ maxIN dû PIN û IN( ) δ φ b,( ) PΦ φ û( ) POUT OUT p= A f( ) b,( ) û( )φ b,∑ .∫=
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Intuitively, this is the minimax probability of C’s answer (b) agreeing with Φ’s answer (φ).

Note that εR:C = 1 implies that φ = b ∀ ^u such that P( ^u | IN) is non-zero (for the maximizing

IN). Now since output partitions are delta functions, if R is the output partition of a computer C',

then all Φ ⊆ F are delta functions. In other words, those intelligibility functions are single-valued

functions from
^
U to B (as always are the partitions IN and OUT). Accordingly, having φnecessar-

ily equal b reduces to the conventional (non-probabilistic) definition of weak predictability, and

Thm. 2 applies. This proves that it is impossible to have two distinguishable probabilistic comput-

ers C1 and C2 such that εC1:C2 = εC2:C1 = 1.

Returning to the case of non-probabilistic partitions, we now present a result that is often

handy in working with systems meeting our definition of weak predictability (i.e., conditions (i)

and (ii). First note that for any partition πcontaining at least two elements, there exists an intelli-

gibility function f for πwith A(f) = B, an intelligibility function f with A(f) = {1}, and an intelli-

gibility function f with A(f) = {0}. By exploiting the surjectivity of output partitions, we can

extend this result to concern such partitions. This is formally established in the following lemma,

which holds whether or not we assume partitions are binary:

Lemma 1: Consider a physical computer C1. If ∃ any output partition OUT2 that is intelligible to

C1, then ∃ q1 ∈ Q1 such that A(q1) = B, a q1 ∈ Q1 such that A(q1) = {0}, and a q1 ∈ Q1 such that

A(q1) = {1}.

Proof: Since {OUT2} is non-empty, {OUT2
q} is non-empty. Pick some q* ∈ {OUT2

q} having at

least two elements. (By definition of physical computer, there is at least one such q*.) Construct

any binary-valued function f*2 of α ∈ A(q*) such that there exists at least one α for which f*2(α)

= 0 and at least one for which f*2(α) = 1. Define an associated function f*2( û ) = f*2(OUT2
α( û ))

if A(OUT2
q( û )) = A(q*), 0 otherwise. By the surjectivity of OUT2(.), ∀ α ∈ A(q*), ∃ û such that

both OUT2
q( û ) = q* and OUT2

α( û ) = α. Therefore ∃ û such that f*2( û ) = 1, and ∃ û such that

f*2( û ) = 0.
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This establishes, by construction, that there is a question-independent intelligibility function for

C2 that takes on both the value 1 and the value 0, f*2. So by our hypothesis that C2 is intelligible to

C1 with respect to any question-independent intelligibility function for C2, we know that f*2 ∈ Q1.

Moreover, viewed as a question, A(f*2) = B. So, we have established that Q1 contains a binary val-

ued function.

Next, note that the function û ∈ Û → 1 is always a question-independent intelligibility function

for C2, as is the function û ∈ Û → 0. Again using surjectivity, we see that A for these two func-

tions are {1} and {0}, respectively. QED.

We now present proofs of some other results presented in the main text.

Proof of Coroll. 2: Hypothesize that the corollary is wrong. Define the composite device C* ≡

(ΙΝ∗ (.) ≡ Πi=1
n-1 INi(.), Q1, OUT1(.)). Since {Ci} is fully distinguishable, IN*(.) is surjective.

Therefore C* is a physical computer.

Since by hypothesis Cn is intelligible to Cn-1, ∃ OUTn-1
q such that A(OUTn-1

q) = B. Also,

since Cn-2 > Cn-1, ∃ INn-2 ∈ {INn-2} such that ∀ ^u ∈ ^U for which A(OUTn-1
q( ^u )) = B,

INn-2( ^u ) = INn-2 ⇒ OUTn-2
α( ^u ) = OUTn-1

α( ^u ). Iterating and exploiting full distinguishabil-

ity, ∃ (IN1, ..., INn-2) such that ∀ ^u ∈ ^U for which A(OUTn-1
q( ^u )) = B, (IN1( ^u ), .., INn-2( ^u ))

= (IN1, ..., INn-2) ⇒ OUT*( ^u ) = OUT1( ^u ) = OUTn-1( ^u ). The same holds when we restrict ^u

so that the space A(OUTn-1
q( ^u )) = {1}, and when we restrict ^u so that A(OUTn-1

q( ^u )) = {0}.

Since by hypothesis Cn is intelligible to Cn-1, and since IN*(.) is surjective, this result means

that Cn is predictable to C*. Conversely, since Cn > C1 by hypothesis, the output partition of C* is

predictable to Cn, and therefore C* is. Finally, since {Ci} is fully distinguishable, C* and Cn are

distinguishable. Therefore Thm. 2 applies, and by using our hypothesis we arrive at a contradic-

tion. QED.

Proof of Thm. 3: Assume our corollary is wrong, and some computer C is predictable to itself.
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Since by definition predictability implies intelligibility, we can apply Lemma 1 to establish that

there is a q ∈ OUTq, q', such that A(q') = B. Therefore one question-independent intelligibility

function for C is the function f from ^u ∈ ^U → B that equals 1 if A(OUTq( ^u )) = B and

OUTα( ^u ) = 0, and equals 0 otherwise. Therefore by hypothesis ∃ IN ∈ {IN} such that IN( ^u ) =

IN ⇒ A(OUTq( ^u )) = B and OUTα( ^u ) = f( ^u ). But if A(OUTq( ^u )) = B, then f( ^u ) =

NOT[OUTα( ^u )], by definition of f(.). Since IN is surjective, this means that there is at least

one ^u ∈ ^U such that A(OUTq( ^u )) = B and OUTα( ^u ) = NOT[OUTα( ^u )]. This is impossible.

QED.

For analyzing god computers the following definition is useful:

Definition 7: Consider a pairwise distinguishable set {Ci} with god computer C1. Define the par-

titions OUTi×j ( ^u ∈ ^U ) ≡ (OUTq
i×j ( ^u ), OUT α

i×j ( ^u )), where each answer map OUT α
i×j ( ^u ) ≡

(OUT1
α( ^u ), OUT2

α( ^u )), and each question [OUTq
i×j ( ^u )] ≡ the mapping given by ^u' ∈ ^U →

([OUT1
q( ^u )]( ^u' ), [OUT2

q( ^u )]( ^u' )). Then C1 is omniscient if OUT2×3×... is weakly predict-

able to C1.

Intuitively, OUTi×j is just the double partition (OUTi(.), OUTj(.)) = ((OUTi
q(.), OUTi

α(.)),

(OUTj
q(.), OUTj

α(.)), re-expressed to be in terms of a single question-valued partition and a sin-

gle answer-valued partition. To motivate this re-expression, for any two questions qi ∈ Qi and qj ∈

Qj, let qi × qj be the ordered product of the partitions qi and qj; it is the partition assigning to every

point ^u' ∈ ^U the label (qi( ^u' ), qj( ^u' )). Then if OUTi
q( ^u ) is the question qi and OUTj

q( ^u ) is

the question qj, OUT i×j
q ( ^u ) is the question qi × qj. OUTi×j

α is defined similarly, only with one

fewer levels of “indirection”, since answer components of output partitions are not themselves

partitions (unlike question components). Note that even though any OUTi(.) and OUTj(.) are both

surjective mappings, OUTi×j need not be surjective onto the set of quadruples {qi ∈ Qi, qj ∈ Qj, αi

∈  A(Qi), αj ∈  A(Qj)}.
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Corollary 3: Consider three pair-wise distinguishable computers C1, C2, C3, where /∃ q3 ∈ Q3

such that A(q3) |⊆ B. Assume that C1 is an omniscient computer, and that C1 is intelligible to C3.

Finally, assume further that not only that C3’s output can be any of its possible question-answer

pairs, but also that for any of its questions, for any of the associated possible answers, there are

situations where that answer is correct (so that C2 should leave C3’s answer alone in those situa-

tions). (Formally, this means that ∀ pairs (q3 ∈ Q3, α3 ∈ A(q3)), ∃ û ∈ Û such that both

OUT3
q( û ) = q3 and q3( û ) = α3, i.e., [OUT3

q( ^u )]( ^u ) = α3.) Then it is not possible that ∀ û

∈ Û, OUT2
α( ^u ) = 1 if [OUT3

q( ^u )]( ^u ) = OUT3
α( ^u ), 0 otherwise.

Proof: Hypothesize that the corollary is wrong. Construct a composite device C2-3, starting by

having IN2-3(.) ≡ OUT3
q(.), Q2-3 = Q3 and OUT2-3

q(.) = OUT3
q(.). Next define the question θ by

the rule θ( ^u ) ≡ NOT[OUT3
α( ^u )] if OUT2

α( ^u ) = 0, θ( ^u ) ≡ OUT3
α( ^u ) otherwise. (N.b. no

assumption is made that θ ∈ Q2-3.) To complete the definition of the composite computer C2-3,

have OUT2-3
α( ^u ) = θ( ^u ).

Now by our hypothesis, ∀ ^u ∈ ^U, θ( ^u ) = [OUT3
q( ^u )]( ^u ). By the last of the conditions

specified in the corollary, this means that ∀ (q2-3 ∈ Q2-3, α2-3 ∈ A(q2-3)), ∃ ^u such that

OUT2-3
q( ^u ) = q2-3 and OUT2-3

α( ^u ) = α2-3. So C2-3 allows all possible values of {OUT2-3}, as

a physical computer must. Due to surjectivity of OUT3
q, it also allows all possible values of the

space {IN2-3}. To complete the proof that C2-3 is a (surjective) physical computer, we must estab-

lish that OUT2-3
α( ^u ) ∈ A(OUT2-3

q( ^u )) ∀ ^u ∈ ^U. To do this note that if for example

A(OUT2-3
q( ^u )) = A(OUT3

q( ^u )) = {1}, then since it is always the case that the OUT2-3
α( ^u ) =

[OUT2-3
q( ^u )]( ^u ) = [OUT3

q( ^u )]( ^u ), OUT2-3
α( ^u ) = 1. Similarly OUT2-3

α( ^u ) ∈

A(OUT2-3
q( ^u )) when A(OUT2-3

q( ^u )) = {0}. Finally, if A(OUT2-3
q( ^u )) = B, then the simple

fact that OUT2-3
α( ^u ) ∈ B always means that OUT2-3

α( ^u ) ∈  A(OUT2-3
q( ^u )).

Since C1 is intelligible to C3 and Q2-3 = Q3, C1 is intelligible to C2-3. Moreover, given any

question q2-3 ∈ Q2-3, ∃ associated IN2-3 ∈ {IN2-3} such that ∀ ^u ∈ ^U for which IN2-3( ^u ) =
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IN2-3, OUT2-3( ^u ) = q2-3. But as was just shown, OUT2-3
α( ^u ) = q2-3( ^u ) for that ^u. Therefore

C1 is predictable to C2-3.

Next, since C1 is omniscient, OUT2×3 is intelligible to C1. Therefore any binary function of

the regions defined by quadruples (A(OUT2
q( ^u )), A(OUT3

q( ^u )), OUT2
α( ^u ), OUT3

α( ^u )) is

an element of Q1. Any single such region is wholly contained in one region defined by the pair

(A(OUT2-3
q( ^u )), OUT2-3

α( ^u )) though. Therefore any binary function of the regions defined by

such pairs is an element of Q1. Therefore C2-3 is intelligible to Q1. Similarly, the value of any

such binary function must be given by OUT1
α( ^u ) whenever IN1( ^u ) equals some associated IN1.

So C2-3 is predictable to C1.

Finally, since C1 and C3 are input-distinguishable, so are C1 and C2-3, and therefore Thm. 2

applies. This establishes that our hypothesis results in a contradiction. QED.

Similarly, we cannot arrange to have two computers be “anti-predictable” to one another. This

is presented in the main text as Coroll. 4 of Thm. 2:

Proof of Coroll. 4: By assumption C1 and C2 are mutually intelligible. So what we must estab-

lish is whether for both of them, for all intelligibility functions concerning the other one, there

exists an appropriate value of INi such that that intelligibility function is incorrectly predicted.

Hypothesize that the corollary is wrong. Then ∀ question-independent intelligibility functions

for C1, f1, ∃ IN2 ∈ {IN2} such that IN2( ^u ) = IN2 implies that [A(OUT2
q( û )) = NOT[A(f1)]] ^

[OUT2
α( û ) = NOT[f1( û )]]. However by definition of question-independent intelligibility func-

tions, given any such f1, there must be another question-independent intelligibility function for

C1, f3, defined by f3(.) ≡ NOT(f1(.)). Therefore ∃ IN2 ∈ {IN2} such that IN2( ^u ) = IN2 implies

that [A(OUT2
q( û )) = A(f3)]  ^  [OUT2

α( û ) = f3( û )].

This NOT(.) transformation bijectively maps the set of all question-independent intelligibility

functions for C2 onto itself. Since that set is finite, this means that the image of the set under the

NOT(.) transformation is the set itself. Therefore our hypothesis means that all question-indepen-
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dent functions for C1 can be predicted correctly by C2 for appropriate choice of IN2 ∈ {IN2}. By

similar reasoning, we see that C1 can always predict C2 correctly. Since C1 and C2 are distinguish-

able, we can now apply Thm. 2 and arrive at a contradiction. QED.

Recall that there are three conditions related to weak predictability, and for pedagogical sim-

plicity we settled on two for our formal definition of the term (cf. discussion preceding Def. 4).

The situation with strong predictability is closely analogous. Its formal definition involving two

conditions is as follows:

Definition 8: Consider a pair of physical computers C1 and C2. We say that C2 is strongly pre-

dictable to C1 (or equivalently that C1 can strongly predict C2), and write C1 >> C2 (or equiva-

lently C2 << C1) iff:

i) C2 is intelligible to C1;

ii) ∀  question-independent intelligibility functions for C2, q1, ∀  IN2 ∈  {IN2},

∃ IN1 ∈ {IN1} that strongly induces the pair (q1, IN2), i.e., such that:

IN1(
^
u ) =  IN1

⇒

    [OUT1
p( û ) = (A(q1), q1( û ))]   ^  [IN2( ^u ) = IN2].

We now present the proofs of some of the fundamental theorems concerning strong predict-

ability:

Proof of Thm. 5: To prove (i), let f be any question-independent intelligibility function for π. By

Lemma 1, the everywhere 0-valued question-independent intelligibility function of π is contained

in Q1, and since C1 > C2, there must be an IN1 such that IN1( û ) = IN1 ⇒ OUT1
α( û ) = 0. The

same is true for the everywhere 1-valued function. Therefore to prove the claim we need only

establish that for every question-independent intelligibility function for π, f, for which A(f) = B, f
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∈ Q1, and there exists an IN1 such that IN1( û ) = IN1 ⇒ OUT1
α( û ) = f( û ). Restrict attention to

such f from now on.

Define a question-independent intelligibility function for C2, I2, such that A(I2) = B, and such

that for all û for which A(OUTq( û )) = B, I2( û ) = OUT2
α( û ). (Note that since C2 > π, there

both exist û for which OUT2
p( û ) = (B, 1) and û such that OUT2

p( û ) = (B, 0.) Now by hypoth-

esis, for any of the f we are considering, ∃ IN2
f ∈ {IN2} such that IN2( û ) = IN2

f ⇒ OUT2
p( û )

= (B, f( û )). However the fact that C1 >> C2 ⇒ ∃ IN1 ∈ {IN1} such that IN1( û ) = IN1 ⇒

IN2( û ) = IN2
f and such that OUT1

p( û ) = (A(I2), I2( û )) = (B, I2( û )). Since IN2( û ) = IN2
f for

such a û, A(OUT2
α( û )) = B, and therefore I2( û ) = OUT2

α( û ). So OUT2
p( û ) for such a û

equals (B, OUT2
α( ^u )). So for that IN1, OUT1

p( û ) = (A(f), f( û )).

This establishes (i). The proof for (ii) goes similarly, with the redefinition that IN1
f fixes the

value of IN3 as well as ensuring that OUT2
p( û ) = (A(f), f( û )). QED.

Proof of Thm. 6: Choose any IN2. For any question-independent intelligibility function of

OUT2
p, f, there must exist an IN1

f ∈ {IN1} that strongly induces IN2 and f, since C1 >> C2. Label

any such IN1 as IN1
f (IN2 being implicitly fixed). So for any such f, { ^u : IN1( ^u ) = IN1

f} ⊆ { ^u :

IN2( ^u ) = IN2}. However since OUT2
p is not empty, there are at least two question-independent

intelligibility functions of OUT2
p, f1 and f2, where A(f1) ≠ A(f2) (cf. Lemma 1). Moreover, the

intersection { ^u : IN1( ^u ) = IN1
f1

} ∩ { ^u : IN1( ^u ) = IN1
f2

} = ∅ , since these two sets induce

different A(OUT1
q) (namely A(f1) and A(f2), respectively). This means that { ^u : IN1( ^u ) =

IN1
f1

} ⊂ { ^u : IN2( ^u ) = IN2}. On the other hand, for the same reasons, there must also exist an

IN2 that strongly induces IN1
f1

. Therefore ∃ IN2' such that { ^u : IN2( ^u ) = IN2'} ⊂ { ^u : IN1( ^u )

= IN1
f1

}. So { ^u : IN2( ^u ) = IN2'} ⊂ { ^u : IN2( ^u ) = IN2}. This is not compatible with the fact

that IN2(.) is a partition. QED.

The following theorems involve physical computation analogues of TM theory.
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Theorem 4: Given a set of physical computers {Ci}, /∃  C1 ∈ {Ci} such that ∀  C2 ∈  {Ci},

i) C2 is intelligible to C1;

ii) ∀  q2 ∈  Q2, ∃  IN1 ∈  {IN1} such that IN1( ^u ) = IN1 ⇒  OUT1
α( ^u ) = 1 iff q2( ^u ) =

  OUT2
α( ^u ).

Proof: Choose C2 such that OUT2(.) = OUT1(.). (If need be, to do this simply choose C2 = C1.)

Then in particular, OUT1
α(.) = OUT2

α(.). Now since C2 is intelligible to C1 by hypothesis, by

Lemma 1 ∃ q1 ∈ Q1 such that A(q1) = {0}, and therefore ∃ q2 ∈ Q2 such that A(q2) = {0}. For

that q2, OUT1
α( ^u ) = 1 iff 0 = OUT1

α( ^u ), which is impossible. QED.

We now present definitions needed to analyze prediction complexity.

Definition 10: For any physical computer C with input space {IN}:

i) Given any partition π, a (weak) prediction input set (of C, for π) is any set s ⊆ {IN} such

that both every intelligibility function for π is weakly induced by an element of s, and for any

proper subset of s at least one such function is not weakly induced. We write the space of all weak

prediction input sets of C for π as C-1(π).

ii) Given any other physical computer C' with input space {IN'} for which the set of all ques-

tion-independent intelligibility functions is {f'}, a (strong) prediction input set of C, for the tri-

ple C', in' ⊆ {IN'}, and f ' ⊆ {f'}, is any set s ⊆ {IN} such that both every pair (f' ∈ f ', IN' ∈ in') is

strongly induced by a member of s, and for any proper subset of s at least one such pair is not

strongly induced. We write the space of all strong prediction input sets (of C, for C', in', and f ') as

C-1(C', in', f ').

Definition 11: Given a physical computer C and a measure dµ over ^U:

i) Define V(in ⊆ {IN}) as the measure of the set of all ^u ∈ ^U such that IN( ^u ) ∈ in, and define the

length of in (with respect to IN(.)) as l(in) ≡  -ln[V(in)];
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ii) Given a partition π that is predictable to a physical computer C, define the prediction com-

plexity of π (with respect to C), c(π | C), as minρ ∈  C-1(π) [l(ρ)].

Proof of Thm. 7: Given any intelligibility function f for π, consider any IN2
f ∈ {IN2} that

weakly induces f, i.e., such that IN2( ^u ) = IN2
f ⇒ OUT2

p( ^u ) = (A(f), f( ^u )). (The analysis will

not be affected if π is an output partition and we restrict attention to those intelligibility functions

for π that are question-independent.) Since C1 >> C2, we can then choose an IN1, IN1
f(IN

2
f), to

strongly induce IN2
f together with any question-independent intelligibility function of OUT2

p.

(Indeed, in general there can be more than one such value of IN1 that induces IN2
f.) So in particu-

lar, we can choose it so that the vector OUT1
p( ^u ) = (A(I2

A(f)), I2
A(f)(

^u )) for any possible func-

tion I2
A(f). Now for that IN1, IN2( û ) = IN2

f, and therefore A(OUT2
q( û )) = A(f), which means

that I2
A(f)( û ) = OUT2

α( û ), which in turn equals f( û ) for that IN2. So ∀ û such that IN1( û ) =

IN1
f(IN

2
f), OUT1

p( û ) = (A(f), f( û )). In other words, IN1
f(IN

2
f) weakly induces in C1 the same

intelligibility function for π that IN2
f weakly induces in C2. However since IN1( ^u ) = IN1

f(IN
2
f)

⇒ IN2
f(

^u ) = IN2
f, the set of ^u ∈ ^U such that IN1( ^u ) = IN1

f(IN
2
f) is ⊆ the set such that IN2( ^u )

= IN2
f. This means that l(IN1

f(IN
2

f)) ≥ l(IN2
f). (Our task, loosely speaking, is to bound this differ-

ence in lengths, and then to extend the analysis to simultaneously consider all such question-inde-

pendent intelligibility functions f.)

Take {fi} to be the set of all intelligibility functions for π.By the preceding construction, π is

weakly predictable to C1 with a (not necessarily proper) subset of {IN1
fi(IN

2
fi
)} being a member

of (C1)
-1

(π). Now any member of (C1)
-1

(π) must contain at least three disjoint elements, corre-

sponding to intelligibility functions q with A(OUT1
q( ^u )) = B, {0}, or {1}. (See the discussion

just before Lemma 1.) Accordingly, the volume (as measured by dµ) of any subset of

{IN1
fi(IN

2
fi
)} ∈ (C1)

-1
(π) must be at least 3 times the volume of the element of {IN1

fi(IN
2
fi
)} hav-

ing the smallest volume. In other words, the length of any subset of {IN1
fi(IN

2
fi
)} ∈ (C1)

-1
(π)

must be at most -ln(3) plus the length of the longest element of {IN1
fi(IN

2
fi
)}. Therefore c(π | C1)
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≤ maxfi [l(IN
1

fi(IN
2

fi
))] - ln(3).

Now take {IN2
fi} to be the set in (C2)

-1
(π) with minimal length. {IN2

fi
} has at most o(2π) dis-

joint elements, one for each intelligibility function for π. Using the relation mini[gi] = -maxi [-gi],

this means that c(π | C2) ≥ -ln[o(2π)] + minfi [l(IN2
fi)]. Therefore we can write c(π | C1) - c(π | C2)

≤ ln[o(2π)] - ln(3) + maxfi [l(IN1
fi(IN

2
fi))] - minfi [l(IN2

fi)]. The fact that for all IN2
fi, IN2( ^u ) =

IN2
fi

⇒  A(OUT2
q( ^u )) = A(fi) ⊆ B completes the proof of (i).

To prove (ii), note that we can always construct one of the sets in (C1)
-1

(π) by starting with the

set consisting of the element of {IN1
fi(IN

2
fi
)} having the shortest length, and then successively

adding other IN1 values to that set, until we get a full (weak) prediction set. Therefore c(π | C1) ≤

minfi l(IN1
fi(IN

2
fi
)). Using this bound rather than the one involving -ln(3) establishes (ii). QED.

Note that the set of X ∈ B such that [C2]-1(X) exists must be non-empty, since C2 > π. Simi-

larly, C2 > πmeans that there is a
^
u such that A(OUTq(

^
u )) = X ⊆ B. The associated I2

X always

exists by construction: simply define I2
X(

^
u ) = OUT2

α(
^
u ) ∀ ^

u such that A(OUTq(
^
u )) = X, and

for all other
^
u, I2

X(
^
u ) = x for some x ∈ X. Therefore the extrema in our bounds are always well-

defined.
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